GVES: machine learning model for identification of prognostic genes with a small dataset
Abstract Machine learning may be a powerful approach to more accurate identification of genes that may serve as prognosticators of cancer outcomes using various types of omics data. However, to date, machine learning approaches have shown limited prediction accuracy for cancer outcomes, primarily ow...
Guardado en:
Autores principales: | Soohyun Ko, Jonghwan Choi, Jaegyoon Ahn |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2ccc46503e47424fa94cca6e873e2639 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A machine learning model with human cognitive biases capable of learning from small and biased datasets
por: Hidetaka Taniguchi, et al.
Publicado: (2018) -
Binding affinity prediction for protein–ligand complex using deep attention mechanism based on intermolecular interactions
por: Sangmin Seo, et al.
Publicado: (2021) -
The METLIN small molecule dataset for machine learning-based retention time prediction
por: Xavier Domingo-Almenara, et al.
Publicado: (2019) -
Detecting Fake News About Covid-19 on Small Datasets with Machine Learning Algorithms
por: Elena Shushkevich, et al.
Publicado: (2021) -
INSTANCE – the Italian seismic dataset for machine learning
por: A. Michelini, et al.
Publicado: (2021)