Role of <italic toggle="yes">CTR4</italic> in the Virulence of <named-content content-type="genus-species">Cryptococcus neoformans</named-content>

ABSTRACT While research has identified an important contribution for metals, such as iron, in microbial pathogenesis, the roles of other transition metals, such as copper, remain mostly unknown. Recent evidence points to a requirement for copper homeostasis in the virulence of Cryptococcus neoforman...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Scott R. Waterman, Yoon-Dong Park, Meera Raja, Jin Qiu, Dima A. Hammoud, Thomas V. O’Halloran, Peter R. Williamson
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2012
Materias:
Acceso en línea:https://doaj.org/article/2cf5dd808ac14b94bc81076eb891abce
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2cf5dd808ac14b94bc81076eb891abce
record_format dspace
spelling oai:doaj.org-article:2cf5dd808ac14b94bc81076eb891abce2021-11-15T15:39:12ZRole of <italic toggle="yes">CTR4</italic> in the Virulence of <named-content content-type="genus-species">Cryptococcus neoformans</named-content>10.1128/mBio.00285-122150-7511https://doaj.org/article/2cf5dd808ac14b94bc81076eb891abce2012-11-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00285-12https://doaj.org/toc/2150-7511ABSTRACT While research has identified an important contribution for metals, such as iron, in microbial pathogenesis, the roles of other transition metals, such as copper, remain mostly unknown. Recent evidence points to a requirement for copper homeostasis in the virulence of Cryptococcus neoformans based on a role for a CUF1 copper regulatory factor in mouse models and in a human patient cohort. C. neoformans is an important fungal pathogen that results in an estimated 600,000 AIDS-related deaths yearly. In the present studies, we found that a C. neoformans mutant lacking the CUF1-dependent copper transporter, CTR4, grows normally in rich medium at 37°C but has reduced survival in macrophages and attenuated virulence in a mouse model. This reduced survival and virulence were traced to a growth defect under nutrient-restricted conditions. Expression studies using a full-length CTR4-fluorescent fusion reporter construct demonstrated robust expression in macrophages, brain, and lung, the latter shown by ex vivo fluorescent imaging. Inductively coupled mass spectroscopy (ICP-MS) was used to probe the copper quota of fungal cells grown in defined medium and recovered from brain, which suggested a role for a copper-protective function of CTR4 in combination with cell metallothioneins under copper-replete conditions. In summary, these data suggest a role for CTR4 in copper-related homeostasis and subsequently in fungal virulence. IMPORTANCE Crytococcus neoformans is a significant global fungal pathogen, and copper homeostasis is a relatively unexplored aspect of microbial pathogenesis that could lead to novel therapeutics. Previous studies correlated expression levels of a Ctr4 copper transporter to development of meningoencephalitis in a patient cohort of solid-organ transplants, but a direct role for Ctr4 in mammalian pathogenesis has not been demonstrated. The present studies utilize a Δctr4 mutant strain which revealed an important role for CTR4 in C. neoformans infections in mice and relate the gene product to homeostatic control of copper and growth under nutrient-restricted conditions. Robust expression levels of CTR4 during fungal infection were exploited to demonstrate expression and lung cryptococcal disease using ex vivo fluorescence imaging. In summary, these studies are the first to directly demonstrate a role for a copper transporter in fungal disease and provide an ex vivo imaging tool for further study of cryptococcal gene expression and pathogenesis.Scott R. WatermanYoon-Dong ParkMeera RajaJin QiuDima A. HammoudThomas V. O’HalloranPeter R. WilliamsonAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 3, Iss 5 (2012)
institution DOAJ
collection DOAJ
language EN
topic Microbiology
QR1-502
spellingShingle Microbiology
QR1-502
Scott R. Waterman
Yoon-Dong Park
Meera Raja
Jin Qiu
Dima A. Hammoud
Thomas V. O’Halloran
Peter R. Williamson
Role of <italic toggle="yes">CTR4</italic> in the Virulence of <named-content content-type="genus-species">Cryptococcus neoformans</named-content>
description ABSTRACT While research has identified an important contribution for metals, such as iron, in microbial pathogenesis, the roles of other transition metals, such as copper, remain mostly unknown. Recent evidence points to a requirement for copper homeostasis in the virulence of Cryptococcus neoformans based on a role for a CUF1 copper regulatory factor in mouse models and in a human patient cohort. C. neoformans is an important fungal pathogen that results in an estimated 600,000 AIDS-related deaths yearly. In the present studies, we found that a C. neoformans mutant lacking the CUF1-dependent copper transporter, CTR4, grows normally in rich medium at 37°C but has reduced survival in macrophages and attenuated virulence in a mouse model. This reduced survival and virulence were traced to a growth defect under nutrient-restricted conditions. Expression studies using a full-length CTR4-fluorescent fusion reporter construct demonstrated robust expression in macrophages, brain, and lung, the latter shown by ex vivo fluorescent imaging. Inductively coupled mass spectroscopy (ICP-MS) was used to probe the copper quota of fungal cells grown in defined medium and recovered from brain, which suggested a role for a copper-protective function of CTR4 in combination with cell metallothioneins under copper-replete conditions. In summary, these data suggest a role for CTR4 in copper-related homeostasis and subsequently in fungal virulence. IMPORTANCE Crytococcus neoformans is a significant global fungal pathogen, and copper homeostasis is a relatively unexplored aspect of microbial pathogenesis that could lead to novel therapeutics. Previous studies correlated expression levels of a Ctr4 copper transporter to development of meningoencephalitis in a patient cohort of solid-organ transplants, but a direct role for Ctr4 in mammalian pathogenesis has not been demonstrated. The present studies utilize a Δctr4 mutant strain which revealed an important role for CTR4 in C. neoformans infections in mice and relate the gene product to homeostatic control of copper and growth under nutrient-restricted conditions. Robust expression levels of CTR4 during fungal infection were exploited to demonstrate expression and lung cryptococcal disease using ex vivo fluorescence imaging. In summary, these studies are the first to directly demonstrate a role for a copper transporter in fungal disease and provide an ex vivo imaging tool for further study of cryptococcal gene expression and pathogenesis.
format article
author Scott R. Waterman
Yoon-Dong Park
Meera Raja
Jin Qiu
Dima A. Hammoud
Thomas V. O’Halloran
Peter R. Williamson
author_facet Scott R. Waterman
Yoon-Dong Park
Meera Raja
Jin Qiu
Dima A. Hammoud
Thomas V. O’Halloran
Peter R. Williamson
author_sort Scott R. Waterman
title Role of <italic toggle="yes">CTR4</italic> in the Virulence of <named-content content-type="genus-species">Cryptococcus neoformans</named-content>
title_short Role of <italic toggle="yes">CTR4</italic> in the Virulence of <named-content content-type="genus-species">Cryptococcus neoformans</named-content>
title_full Role of <italic toggle="yes">CTR4</italic> in the Virulence of <named-content content-type="genus-species">Cryptococcus neoformans</named-content>
title_fullStr Role of <italic toggle="yes">CTR4</italic> in the Virulence of <named-content content-type="genus-species">Cryptococcus neoformans</named-content>
title_full_unstemmed Role of <italic toggle="yes">CTR4</italic> in the Virulence of <named-content content-type="genus-species">Cryptococcus neoformans</named-content>
title_sort role of <italic toggle="yes">ctr4</italic> in the virulence of <named-content content-type="genus-species">cryptococcus neoformans</named-content>
publisher American Society for Microbiology
publishDate 2012
url https://doaj.org/article/2cf5dd808ac14b94bc81076eb891abce
work_keys_str_mv AT scottrwaterman roleofitalictoggleyesctr4italicinthevirulenceofnamedcontentcontenttypegenusspeciescryptococcusneoformansnamedcontent
AT yoondongpark roleofitalictoggleyesctr4italicinthevirulenceofnamedcontentcontenttypegenusspeciescryptococcusneoformansnamedcontent
AT meeraraja roleofitalictoggleyesctr4italicinthevirulenceofnamedcontentcontenttypegenusspeciescryptococcusneoformansnamedcontent
AT jinqiu roleofitalictoggleyesctr4italicinthevirulenceofnamedcontentcontenttypegenusspeciescryptococcusneoformansnamedcontent
AT dimaahammoud roleofitalictoggleyesctr4italicinthevirulenceofnamedcontentcontenttypegenusspeciescryptococcusneoformansnamedcontent
AT thomasvohalloran roleofitalictoggleyesctr4italicinthevirulenceofnamedcontentcontenttypegenusspeciescryptococcusneoformansnamedcontent
AT peterrwilliamson roleofitalictoggleyesctr4italicinthevirulenceofnamedcontentcontenttypegenusspeciescryptococcusneoformansnamedcontent
_version_ 1718427755365793792