Load forecasting of electric vehicle charging station based on grey theory and neural network
The rapid development of electric vehicles (EVs) makes the load of electric vehicle charging stations (EVCSs) affect the power grid. Aiming at the low accuracy of charging station load forecasting caused by the number of EVs, temperature and electricity price, and other factors, this paper proposes...
Enregistré dans:
Auteurs principaux: | Jiawei Feng, Junyou Yang, Yunlu Li, Haixin Wang, Huichao Ji, Wanying Yang, Kang Wang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/2cfe7b31942a420c83bf5d8e43a3f52e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Validation of optimal electric vehicle charging station allotment on IEEE 15-bus system
par: D. Sengupta, et autres
Publié: (2021) -
Optimal Configuration of the Integrated Charging Station for PV and Hydrogen Storage
par: Min Wang, et autres
Publié: (2021) -
UFNGBM (1,1): A novel unbiased fractional grey Bernoulli model with Whale Optimization Algorithm and its application to electricity consumption forecasting in China
par: Bin Pu, et autres
Publié: (2021) -
Analysis of microgrid integrated Photovoltaic (PV) Powered Electric Vehicle Charging Stations (EVCS) under different solar irradiation conditions in India: A way towards sustainable development and growth
par: Himabindu N., et autres
Publié: (2021) -
Load data recovery method based on SOM-LSTM neural network
par: Yiming Ma, et autres
Publié: (2022)