Analytical Treatment Interruption after Short-Term Antiretroviral Therapy in a Postnatally Simian-Human Immunodeficiency Virus-Infected Infant Rhesus Macaque Model

ABSTRACT To achieve long-term viral remission in human immunodeficiency virus (HIV)-infected children, novel strategies beyond early antiretroviral therapy (ART) will be necessary. Identifying clinical predictors of the time to viral rebound upon ART interruption will streamline the development of n...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ria Goswami, Ashley N. Nelson, Joshua J. Tu, Maria Dennis, Liqi Feng, Amit Kumar, Jesse Mangold, Riley J. Mangan, Cameron Mattingly, Alan D. Curtis, Veronica Obregon-Perko, Maud Mavigner, Justin Pollara, George M. Shaw, Katharine J. Bar, Ann Chahroudi, Kristina De Paris, Cliburn Chan, Koen K. A. Van Rompay, Sallie R. Permar
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://doaj.org/article/2d07f7f1798d4cddb1ebdeee807044e8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2d07f7f1798d4cddb1ebdeee807044e8
record_format dspace
spelling oai:doaj.org-article:2d07f7f1798d4cddb1ebdeee807044e82021-11-15T15:59:42ZAnalytical Treatment Interruption after Short-Term Antiretroviral Therapy in a Postnatally Simian-Human Immunodeficiency Virus-Infected Infant Rhesus Macaque Model10.1128/mBio.01971-192150-7511https://doaj.org/article/2d07f7f1798d4cddb1ebdeee807044e82019-10-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.01971-19https://doaj.org/toc/2150-7511ABSTRACT To achieve long-term viral remission in human immunodeficiency virus (HIV)-infected children, novel strategies beyond early antiretroviral therapy (ART) will be necessary. Identifying clinical predictors of the time to viral rebound upon ART interruption will streamline the development of novel therapeutic strategies and accelerate their evaluation in clinical trials. However, identification of these biomarkers is logistically challenging in infants, due to sampling limitations and the potential risks of treatment interruption. To facilitate the identification of biomarkers predicting viral rebound, we have developed an infant rhesus macaque (RM) model of oral simian-human immunodeficiency virus (SHIV) SHIV.CH505.375H.dCT challenge and analytical treatment interruption (ATI) after short-term ART. We used this model to characterize SHIV replication kinetics and virus-specific immune responses during short-term ART or after ATI and demonstrated plasma viral rebound in 5 out of 6 (83%) infants. We observed a decline in humoral immune responses and partial dampening of systemic immune activation upon initiation of ART in these infants. Furthermore, we monitored SHIV replication and rebound kinetics in infant and adult RMs and found that both infants and adults demonstrated equally potent virus-specific humoral immune responses. Finally, we validated our models by confirming a well-established correlate of the time to viral rebound, namely, the pre-ART plasma viral load, as well as identified additional potential humoral immune correlates. Thus, this model of infant ART and viral rebound can be used and further optimized to define biomarkers of viral rebound following long-term ART as well as to preclinically assess novel therapies to achieve a pediatric HIV functional cure. IMPORTANCE Novel interventions that do not rely on daily adherence to ART are needed to achieve sustained viral remission for perinatally infected children, who currently rely on lifelong ART. Considering the risks and expense associated with ART interruption trials, the identification of biomarkers of viral rebound will prioritize promising therapeutic intervention strategies, including anti-HIV Env protein therapeutics. However, comprehensive studies to identify those biomarkers are logistically challenging in human infants, demanding the need for relevant nonhuman primate models of HIV rebound. In this study, we developed an infant RM model of oral infection with simian-human immunodeficiency virus expressing clade C HIV Env and short-term ART followed by ATI, longitudinally characterizing the immune responses to viral infection during ART and after ATI. Additionally, we compared this infant RM model to an analogous adult RM rebound model and identified virologic and immunologic correlates of the time to viral rebound after ATI.Ria GoswamiAshley N. NelsonJoshua J. TuMaria DennisLiqi FengAmit KumarJesse MangoldRiley J. ManganCameron MattinglyAlan D. CurtisVeronica Obregon-PerkoMaud MavignerJustin PollaraGeorge M. ShawKatharine J. BarAnn ChahroudiKristina De ParisCliburn ChanKoen K. A. Van RompaySallie R. PermarAmerican Society for Microbiologyarticleanalytical treatment interruptionHIV reservoirpediatric HIV cureSHIVMicrobiologyQR1-502ENmBio, Vol 10, Iss 5 (2019)
institution DOAJ
collection DOAJ
language EN
topic analytical treatment interruption
HIV reservoir
pediatric HIV cure
SHIV
Microbiology
QR1-502
spellingShingle analytical treatment interruption
HIV reservoir
pediatric HIV cure
SHIV
Microbiology
QR1-502
Ria Goswami
Ashley N. Nelson
Joshua J. Tu
Maria Dennis
Liqi Feng
Amit Kumar
Jesse Mangold
Riley J. Mangan
Cameron Mattingly
Alan D. Curtis
Veronica Obregon-Perko
Maud Mavigner
Justin Pollara
George M. Shaw
Katharine J. Bar
Ann Chahroudi
Kristina De Paris
Cliburn Chan
Koen K. A. Van Rompay
Sallie R. Permar
Analytical Treatment Interruption after Short-Term Antiretroviral Therapy in a Postnatally Simian-Human Immunodeficiency Virus-Infected Infant Rhesus Macaque Model
description ABSTRACT To achieve long-term viral remission in human immunodeficiency virus (HIV)-infected children, novel strategies beyond early antiretroviral therapy (ART) will be necessary. Identifying clinical predictors of the time to viral rebound upon ART interruption will streamline the development of novel therapeutic strategies and accelerate their evaluation in clinical trials. However, identification of these biomarkers is logistically challenging in infants, due to sampling limitations and the potential risks of treatment interruption. To facilitate the identification of biomarkers predicting viral rebound, we have developed an infant rhesus macaque (RM) model of oral simian-human immunodeficiency virus (SHIV) SHIV.CH505.375H.dCT challenge and analytical treatment interruption (ATI) after short-term ART. We used this model to characterize SHIV replication kinetics and virus-specific immune responses during short-term ART or after ATI and demonstrated plasma viral rebound in 5 out of 6 (83%) infants. We observed a decline in humoral immune responses and partial dampening of systemic immune activation upon initiation of ART in these infants. Furthermore, we monitored SHIV replication and rebound kinetics in infant and adult RMs and found that both infants and adults demonstrated equally potent virus-specific humoral immune responses. Finally, we validated our models by confirming a well-established correlate of the time to viral rebound, namely, the pre-ART plasma viral load, as well as identified additional potential humoral immune correlates. Thus, this model of infant ART and viral rebound can be used and further optimized to define biomarkers of viral rebound following long-term ART as well as to preclinically assess novel therapies to achieve a pediatric HIV functional cure. IMPORTANCE Novel interventions that do not rely on daily adherence to ART are needed to achieve sustained viral remission for perinatally infected children, who currently rely on lifelong ART. Considering the risks and expense associated with ART interruption trials, the identification of biomarkers of viral rebound will prioritize promising therapeutic intervention strategies, including anti-HIV Env protein therapeutics. However, comprehensive studies to identify those biomarkers are logistically challenging in human infants, demanding the need for relevant nonhuman primate models of HIV rebound. In this study, we developed an infant RM model of oral infection with simian-human immunodeficiency virus expressing clade C HIV Env and short-term ART followed by ATI, longitudinally characterizing the immune responses to viral infection during ART and after ATI. Additionally, we compared this infant RM model to an analogous adult RM rebound model and identified virologic and immunologic correlates of the time to viral rebound after ATI.
format article
author Ria Goswami
Ashley N. Nelson
Joshua J. Tu
Maria Dennis
Liqi Feng
Amit Kumar
Jesse Mangold
Riley J. Mangan
Cameron Mattingly
Alan D. Curtis
Veronica Obregon-Perko
Maud Mavigner
Justin Pollara
George M. Shaw
Katharine J. Bar
Ann Chahroudi
Kristina De Paris
Cliburn Chan
Koen K. A. Van Rompay
Sallie R. Permar
author_facet Ria Goswami
Ashley N. Nelson
Joshua J. Tu
Maria Dennis
Liqi Feng
Amit Kumar
Jesse Mangold
Riley J. Mangan
Cameron Mattingly
Alan D. Curtis
Veronica Obregon-Perko
Maud Mavigner
Justin Pollara
George M. Shaw
Katharine J. Bar
Ann Chahroudi
Kristina De Paris
Cliburn Chan
Koen K. A. Van Rompay
Sallie R. Permar
author_sort Ria Goswami
title Analytical Treatment Interruption after Short-Term Antiretroviral Therapy in a Postnatally Simian-Human Immunodeficiency Virus-Infected Infant Rhesus Macaque Model
title_short Analytical Treatment Interruption after Short-Term Antiretroviral Therapy in a Postnatally Simian-Human Immunodeficiency Virus-Infected Infant Rhesus Macaque Model
title_full Analytical Treatment Interruption after Short-Term Antiretroviral Therapy in a Postnatally Simian-Human Immunodeficiency Virus-Infected Infant Rhesus Macaque Model
title_fullStr Analytical Treatment Interruption after Short-Term Antiretroviral Therapy in a Postnatally Simian-Human Immunodeficiency Virus-Infected Infant Rhesus Macaque Model
title_full_unstemmed Analytical Treatment Interruption after Short-Term Antiretroviral Therapy in a Postnatally Simian-Human Immunodeficiency Virus-Infected Infant Rhesus Macaque Model
title_sort analytical treatment interruption after short-term antiretroviral therapy in a postnatally simian-human immunodeficiency virus-infected infant rhesus macaque model
publisher American Society for Microbiology
publishDate 2019
url https://doaj.org/article/2d07f7f1798d4cddb1ebdeee807044e8
work_keys_str_mv AT riagoswami analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT ashleynnelson analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT joshuajtu analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT mariadennis analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT liqifeng analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT amitkumar analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT jessemangold analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT rileyjmangan analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT cameronmattingly analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT alandcurtis analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT veronicaobregonperko analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT maudmavigner analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT justinpollara analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT georgemshaw analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT katharinejbar analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT annchahroudi analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT kristinadeparis analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT cliburnchan analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT koenkavanrompay analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
AT sallierpermar analyticaltreatmentinterruptionaftershorttermantiretroviraltherapyinapostnatallysimianhumanimmunodeficiencyvirusinfectedinfantrhesusmacaquemodel
_version_ 1718426956649725952