Fracture Behavior of Beech-Furan Wood Polymer under Mode I
In this study, characteristics of wood-polymer fracture under mode I were investigated by double cantilever beam. In this regard, the properties of furfurylated specimens with three different levels of furfurylation (20%, 30% and 65%) were evaluated in both RL and TL systems. Results indicated that...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | FA |
Publicado: |
Regional Information Center for Science and Technology (RICeST)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2d13ff6d0d8140b990b4072a472b6b45 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2d13ff6d0d8140b990b4072a472b6b45 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2d13ff6d0d8140b990b4072a472b6b452021-12-02T09:11:24ZFracture Behavior of Beech-Furan Wood Polymer under Mode I1735-09132383-112X10.22092/ijwpr.2014.8456https://doaj.org/article/2d13ff6d0d8140b990b4072a472b6b452014-12-01T00:00:00Zhttp://ijwpr.areeo.ac.ir/article_8456_fc2ac2c9d563d7512ec46c772ec7c083.pdfhttps://doaj.org/toc/1735-0913https://doaj.org/toc/2383-112XIn this study, characteristics of wood-polymer fracture under mode I were investigated by double cantilever beam. In this regard, the properties of furfurylated specimens with three different levels of furfurylation (20%, 30% and 65%) were evaluated in both RL and TL systems. Results indicated that load-displacement curves from mode I fracture specimens were changed by furfurylation so that it was much clear on curves of TL system. These changes not only included curve slope in elastic and proportional limit zones, but also fracture zone and initiation of crack growth were included . Furthermore furfurylation and raising its content on both systems and especially on TL one, caused to change in stress intensity factor, KIC , and critical energy release rate , GIC. In both systems GIC were highly increased by increasing of furfurylation contents. This criterion demonstrated that the wood- polymer showed much toughness under mode I fracture. Moreover, variation of KIC values due to furfurylation at both systems was different with that of GIC. At the RL system, ascending trend was observed at KIC and GIC values by increasing furfurylation levels. But at TL system, KIC was decreased by furfurylation and this criterion enhanced by increasing of furan polymer in the cell wall. Generally, results of this research show that fracture toughness of wood is highly affected by furfurylation processHamideh AbdolzadehGhanbar EbrahimiMohammad LayeghiMehdi GhasemiehSeiad Ahmad MirshokraeiRegional Information Center for Science and Technology (RICeST)articleFracture Mechanicswood-polymerMode IFracture ToughnessEnergy Release RateForestrySD1-669.5FAتحقیقات علوم چوب و کاغذ ایران, Vol 29, Iss 4, Pp 609-622 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
FA |
topic |
Fracture Mechanics wood-polymer Mode I Fracture Toughness Energy Release Rate Forestry SD1-669.5 |
spellingShingle |
Fracture Mechanics wood-polymer Mode I Fracture Toughness Energy Release Rate Forestry SD1-669.5 Hamideh Abdolzadeh Ghanbar Ebrahimi Mohammad Layeghi Mehdi Ghasemieh Seiad Ahmad Mirshokraei Fracture Behavior of Beech-Furan Wood Polymer under Mode I |
description |
In this study, characteristics of wood-polymer fracture under mode I were investigated by double cantilever beam. In this regard, the properties of furfurylated specimens with three different levels of furfurylation (20%, 30% and 65%) were evaluated in both RL and TL systems. Results indicated that load-displacement curves from mode I fracture specimens were changed by furfurylation so that it was much clear on curves of TL system. These changes not only included curve slope in elastic and proportional limit zones, but also fracture zone and initiation of crack growth were included . Furthermore furfurylation and raising its content on both systems and especially on TL one, caused to change in stress intensity factor, KIC , and critical energy release rate , GIC. In both systems GIC were highly increased by increasing of furfurylation contents. This criterion demonstrated that the wood- polymer showed much toughness under mode I fracture. Moreover, variation of KIC values due to furfurylation at both systems was different with that of GIC. At the RL system, ascending trend was observed at KIC and GIC values by increasing furfurylation levels. But at TL system, KIC was decreased by furfurylation and this criterion enhanced by increasing of furan polymer in the cell wall. Generally, results of this research show that fracture toughness of wood is highly affected by furfurylation process |
format |
article |
author |
Hamideh Abdolzadeh Ghanbar Ebrahimi Mohammad Layeghi Mehdi Ghasemieh Seiad Ahmad Mirshokraei |
author_facet |
Hamideh Abdolzadeh Ghanbar Ebrahimi Mohammad Layeghi Mehdi Ghasemieh Seiad Ahmad Mirshokraei |
author_sort |
Hamideh Abdolzadeh |
title |
Fracture Behavior of Beech-Furan Wood Polymer under Mode I |
title_short |
Fracture Behavior of Beech-Furan Wood Polymer under Mode I |
title_full |
Fracture Behavior of Beech-Furan Wood Polymer under Mode I |
title_fullStr |
Fracture Behavior of Beech-Furan Wood Polymer under Mode I |
title_full_unstemmed |
Fracture Behavior of Beech-Furan Wood Polymer under Mode I |
title_sort |
fracture behavior of beech-furan wood polymer under mode i |
publisher |
Regional Information Center for Science and Technology (RICeST) |
publishDate |
2014 |
url |
https://doaj.org/article/2d13ff6d0d8140b990b4072a472b6b45 |
work_keys_str_mv |
AT hamidehabdolzadeh fracturebehaviorofbeechfuranwoodpolymerundermodei AT ghanbarebrahimi fracturebehaviorofbeechfuranwoodpolymerundermodei AT mohammadlayeghi fracturebehaviorofbeechfuranwoodpolymerundermodei AT mehdighasemieh fracturebehaviorofbeechfuranwoodpolymerundermodei AT seiadahmadmirshokraei fracturebehaviorofbeechfuranwoodpolymerundermodei |
_version_ |
1718398174746378240 |