Assessing the feasibility of using a neural network to filter Orbiting Carbon Observatory 2 (OCO-2) retrievals at northern high latitudes
<p>Satellite retrievals of <span class="inline-formula">XCO<sub>2</sub></span> at northern high latitudes currently have sparser coverage and lower data quality than most other regions of the world. We use a neural network (NN) to filter Orbiting Carbon Observ...
Guardado en:
Autores principales: | J. Mendonca, R. Nassar, C. W. O'Dell, R. Kivi, I. Morino, J. Notholt, C. Petri, K. Strong, D. Wunch |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Copernicus Publications
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2d281de1674742429e37e44d1d0ac717 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neural-network-based estimation of regional-scale anthropogenic CO<sub>2</sub> emissions using an Orbiting Carbon Observatory-2 (OCO-2) dataset over East and West Asia
por: F. Mustafa, et al.
Publicado: (2021) -
Triple-frequency radar retrieval of microphysical properties of snow
por: K. Mroz, et al.
Publicado: (2021) -
Support vector machine tropical wind speed retrieval in the presence of rain for Ku-band wind scatterometry
por: X. Xu, et al.
Publicado: (2021) -
An improved TROPOMI tropospheric NO<sub>2</sub> research product over Europe
por: S. Liu, et al.
Publicado: (2021) -
TROPOMI tropospheric ozone column data: geophysical assessment and comparison to ozonesondes, GOME-2B and OMI
por: D. Hubert, et al.
Publicado: (2021)