Nanometer size silicon particles for hyperpolarized MRI
Abstract Hyperpolarized silicon particles have been shown to exhibit long spin-lattice relaxation times at room temperature, making them interesting as novel MRI probes. Demonstrations of hyperpolarized silicon particle imaging have focused on large micron size particles (average particle size (APS)...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2d48c3118cfa4af8bc9fe9b9daedd22c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Hyperpolarized silicon particles have been shown to exhibit long spin-lattice relaxation times at room temperature, making them interesting as novel MRI probes. Demonstrations of hyperpolarized silicon particle imaging have focused on large micron size particles (average particle size (APS) = 2.2 μm) as they have, to date, demonstrated much larger polarizations than nanoparticles. We show that also much smaller silicon-29 particles (APS = 55 ± 12 nm) can be hyperpolarized with superior properties. A maximum polarization of 12.6% in the solid state is reported with a spin-lattice relaxation time of 42 min at room temperature thereby opening a new window for MRI applications. |
---|