Integrated BIM and VR to implement IPD mode in transportation infrastructure projects: System design and case application

The complex design of transportation infrastructure hinders communication between different roles in the project, which makes it difficult to promote the Integrated Project Delivery (IPD) mode. This paper discusses a design simulation and communication system based on Building Information Modeling a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ziqi Hao, Wensheng Zhang, Yunche Zhao
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2d4924283add4e36a816fce66d218a77
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2d4924283add4e36a816fce66d218a77
record_format dspace
spelling oai:doaj.org-article:2d4924283add4e36a816fce66d218a772021-11-18T08:14:33ZIntegrated BIM and VR to implement IPD mode in transportation infrastructure projects: System design and case application1932-6203https://doaj.org/article/2d4924283add4e36a816fce66d218a772021-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584753/?tool=EBIhttps://doaj.org/toc/1932-6203The complex design of transportation infrastructure hinders communication between different roles in the project, which makes it difficult to promote the Integrated Project Delivery (IPD) mode. This paper discusses a design simulation and communication system based on Building Information Modeling and Virtual Reality for transportation infrastructure (DSC-BV-TI system), integrated with BIM, with VR developed by using a game engine. Based on an analysis of the user’s demand, the system introduces a three-dimensional BIM model of traffic infrastructure in an immersive VR environment and realizes the simulation design, weather simulation, virtual driving, sight distance calculation, visual simulation and other functions of traffic infrastructure project by using the system’s safety assessment and scheme decision. The system is applied to the design of the Jinjiazhuang Extra-Long Tunnel project of the Yan-Chong Expressway in Hebei Province, which was built for the 2022 Winter Olympics. The results show that, using the DSC-BV-TI system, the designer has completed a display of the overall scheme: the user can use the steering wheel to drive a vehicle; use the head-mounted display to play the picture; realize the simulation and interaction in a variety of simulated weather conditions and environments; and use IPD mode to communicate and make decisions on the design scheme of the traffic infrastructure, tunnel speed limit and other aspects that play a key role. The DSC-BV-TI system has 8 advantages and 4 disadvantages identified through a questionnaire survey, the advantages including high fidelity, high efficiency and low cost. At the same time, according to the research results, three suggestions to help improve the system are discussed. DSC-BV-TI system as a communication bridge between the design team and other stakeholders reduces the communication gap and promotes the implementation of the IPD mode in transportation infrastructure projects.Ziqi HaoWensheng ZhangYunche ZhaoPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Ziqi Hao
Wensheng Zhang
Yunche Zhao
Integrated BIM and VR to implement IPD mode in transportation infrastructure projects: System design and case application
description The complex design of transportation infrastructure hinders communication between different roles in the project, which makes it difficult to promote the Integrated Project Delivery (IPD) mode. This paper discusses a design simulation and communication system based on Building Information Modeling and Virtual Reality for transportation infrastructure (DSC-BV-TI system), integrated with BIM, with VR developed by using a game engine. Based on an analysis of the user’s demand, the system introduces a three-dimensional BIM model of traffic infrastructure in an immersive VR environment and realizes the simulation design, weather simulation, virtual driving, sight distance calculation, visual simulation and other functions of traffic infrastructure project by using the system’s safety assessment and scheme decision. The system is applied to the design of the Jinjiazhuang Extra-Long Tunnel project of the Yan-Chong Expressway in Hebei Province, which was built for the 2022 Winter Olympics. The results show that, using the DSC-BV-TI system, the designer has completed a display of the overall scheme: the user can use the steering wheel to drive a vehicle; use the head-mounted display to play the picture; realize the simulation and interaction in a variety of simulated weather conditions and environments; and use IPD mode to communicate and make decisions on the design scheme of the traffic infrastructure, tunnel speed limit and other aspects that play a key role. The DSC-BV-TI system has 8 advantages and 4 disadvantages identified through a questionnaire survey, the advantages including high fidelity, high efficiency and low cost. At the same time, according to the research results, three suggestions to help improve the system are discussed. DSC-BV-TI system as a communication bridge between the design team and other stakeholders reduces the communication gap and promotes the implementation of the IPD mode in transportation infrastructure projects.
format article
author Ziqi Hao
Wensheng Zhang
Yunche Zhao
author_facet Ziqi Hao
Wensheng Zhang
Yunche Zhao
author_sort Ziqi Hao
title Integrated BIM and VR to implement IPD mode in transportation infrastructure projects: System design and case application
title_short Integrated BIM and VR to implement IPD mode in transportation infrastructure projects: System design and case application
title_full Integrated BIM and VR to implement IPD mode in transportation infrastructure projects: System design and case application
title_fullStr Integrated BIM and VR to implement IPD mode in transportation infrastructure projects: System design and case application
title_full_unstemmed Integrated BIM and VR to implement IPD mode in transportation infrastructure projects: System design and case application
title_sort integrated bim and vr to implement ipd mode in transportation infrastructure projects: system design and case application
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/2d4924283add4e36a816fce66d218a77
work_keys_str_mv AT ziqihao integratedbimandvrtoimplementipdmodeintransportationinfrastructureprojectssystemdesignandcaseapplication
AT wenshengzhang integratedbimandvrtoimplementipdmodeintransportationinfrastructureprojectssystemdesignandcaseapplication
AT yunchezhao integratedbimandvrtoimplementipdmodeintransportationinfrastructureprojectssystemdesignandcaseapplication
_version_ 1718422033774149632