In vivo visualization of photoreceptor layer and lipofuscin accumulation in Stargardt’s disease and fundus flavimaculatus by high resolution spectral-domain optical coherence tomography
Giuseppe Querques, Rosy Prato, Gabriel Coscas, Gisèle Soubrane, Eric H SouiedDepartment of Ophthalmology, Hopital Intercommunal de Creteil, University Paris XII, FranceIntroduction: To assess photoreceptor (PR) layer morphology in patients with Stargardt’s d...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2009
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2d4a5203f42c467496386b4b77ff2762 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2d4a5203f42c467496386b4b77ff2762 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2d4a5203f42c467496386b4b77ff27622021-12-02T00:24:19ZIn vivo visualization of photoreceptor layer and lipofuscin accumulation in Stargardt’s disease and fundus flavimaculatus by high resolution spectral-domain optical coherence tomography1177-54671177-5483https://doaj.org/article/2d4a5203f42c467496386b4b77ff27622009-12-01T00:00:00Zhttp://www.dovepress.com/in-vivo-visualization-of-photoreceptor-layer-and-lipofuscin-accumulati-a3793https://doaj.org/toc/1177-5467https://doaj.org/toc/1177-5483Giuseppe Querques, Rosy Prato, Gabriel Coscas, Gisèle Soubrane, Eric H SouiedDepartment of Ophthalmology, Hopital Intercommunal de Creteil, University Paris XII, FranceIntroduction: To assess photoreceptor (PR) layer morphology in patients with Stargardt’s disease (STGD) and fundus flavimaculatus (FFM) using high resolution spectral domain optical coherence tomography (HD-OCT; OCT 4000 Cirrus, Humphrey-Zeiss, San Leandro, CA).Methods: This was a prospective observational case series. Sixteen consecutive patients with STGD and FFM underwent a complete ophthalmologic examination. Optical coherence tomography examination was performed with HD-OCT, a high-speed (27,000 axial scans per second) OCT system using spectral/Fourier domain detection, with an axial image resolution of 5 µm.Results: A total of 31 eyes were included in the study. Transverse loss of the PR layer in the foveal region was shown by HD-OCT. Twenty eyes with clinically evident central atrophy had a disruption of either the Verhoeff‘s membrane (VM) or the layer corresponding to the interface of inner segment (IS) and outer segment (OS) of PR in the foveal region. Among these eyes, 12/20 eyes had a loss of the PR layer (loss of both VM and IS-OS interface) in the foveal region. Eleven eyes (11/31) without clinically evident central atrophy had an intact interface of IS and OS of PR centrally. Moreover, we observed hyperreflective deposits: type 1 lesions located within the retinal pigment epithelium (RPE) layer and at the level of the outer segments of PR, and type 2 lesions located at the level of the outer nuclear layer and clearly separated from the RPE layer. Type 1 lesions alone were associated with absence of loss of the PR layer in the foveal region in all eyes; type 2 lesions were always associated with presence of type 1 lesions, and often (8/12 eyes) associated with loss of the PR layer within the foveal region. Mean best-corrected visual acuity (BCVA) was significantly correlated with loss of the PR layer in the foveal region (P < 0.001), as well as to presence of type 2 flecks (P = 0.03).Conclusion: Type 2 deposits in STGD/FFM patients seem to represent a marker of the possible evolution towards foveal atrophy.Keywords: fundus flavimaculatus, high definition optical coherence tomography, retinal dystrophy, stargardt’s disease Giuseppe QuerquesRosy PratoGabriel Coscaset alDove Medical PressarticleOphthalmologyRE1-994ENClinical Ophthalmology, Vol 2009, Iss default, Pp 693-699 (2009) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Ophthalmology RE1-994 |
spellingShingle |
Ophthalmology RE1-994 Giuseppe Querques Rosy Prato Gabriel Coscas et al In vivo visualization of photoreceptor layer and lipofuscin accumulation in Stargardt’s disease and fundus flavimaculatus by high resolution spectral-domain optical coherence tomography |
description |
Giuseppe Querques, Rosy Prato, Gabriel Coscas, Gisèle Soubrane, Eric H SouiedDepartment of Ophthalmology, Hopital Intercommunal de Creteil, University Paris XII, FranceIntroduction: To assess photoreceptor (PR) layer morphology in patients with Stargardt’s disease (STGD) and fundus flavimaculatus (FFM) using high resolution spectral domain optical coherence tomography (HD-OCT; OCT 4000 Cirrus, Humphrey-Zeiss, San Leandro, CA).Methods: This was a prospective observational case series. Sixteen consecutive patients with STGD and FFM underwent a complete ophthalmologic examination. Optical coherence tomography examination was performed with HD-OCT, a high-speed (27,000 axial scans per second) OCT system using spectral/Fourier domain detection, with an axial image resolution of 5 µm.Results: A total of 31 eyes were included in the study. Transverse loss of the PR layer in the foveal region was shown by HD-OCT. Twenty eyes with clinically evident central atrophy had a disruption of either the Verhoeff‘s membrane (VM) or the layer corresponding to the interface of inner segment (IS) and outer segment (OS) of PR in the foveal region. Among these eyes, 12/20 eyes had a loss of the PR layer (loss of both VM and IS-OS interface) in the foveal region. Eleven eyes (11/31) without clinically evident central atrophy had an intact interface of IS and OS of PR centrally. Moreover, we observed hyperreflective deposits: type 1 lesions located within the retinal pigment epithelium (RPE) layer and at the level of the outer segments of PR, and type 2 lesions located at the level of the outer nuclear layer and clearly separated from the RPE layer. Type 1 lesions alone were associated with absence of loss of the PR layer in the foveal region in all eyes; type 2 lesions were always associated with presence of type 1 lesions, and often (8/12 eyes) associated with loss of the PR layer within the foveal region. Mean best-corrected visual acuity (BCVA) was significantly correlated with loss of the PR layer in the foveal region (P < 0.001), as well as to presence of type 2 flecks (P = 0.03).Conclusion: Type 2 deposits in STGD/FFM patients seem to represent a marker of the possible evolution towards foveal atrophy.Keywords: fundus flavimaculatus, high definition optical coherence tomography, retinal dystrophy, stargardt’s disease |
format |
article |
author |
Giuseppe Querques Rosy Prato Gabriel Coscas et al |
author_facet |
Giuseppe Querques Rosy Prato Gabriel Coscas et al |
author_sort |
Giuseppe Querques |
title |
In vivo visualization of photoreceptor layer and lipofuscin accumulation in Stargardt’s disease and fundus flavimaculatus by high resolution spectral-domain optical coherence tomography |
title_short |
In vivo visualization of photoreceptor layer and lipofuscin accumulation in Stargardt’s disease and fundus flavimaculatus by high resolution spectral-domain optical coherence tomography |
title_full |
In vivo visualization of photoreceptor layer and lipofuscin accumulation in Stargardt’s disease and fundus flavimaculatus by high resolution spectral-domain optical coherence tomography |
title_fullStr |
In vivo visualization of photoreceptor layer and lipofuscin accumulation in Stargardt’s disease and fundus flavimaculatus by high resolution spectral-domain optical coherence tomography |
title_full_unstemmed |
In vivo visualization of photoreceptor layer and lipofuscin accumulation in Stargardt’s disease and fundus flavimaculatus by high resolution spectral-domain optical coherence tomography |
title_sort |
in vivo visualization of photoreceptor layer and lipofuscin accumulation in stargardt’s disease and fundus flavimaculatus by high resolution spectral-domain optical coherence tomography |
publisher |
Dove Medical Press |
publishDate |
2009 |
url |
https://doaj.org/article/2d4a5203f42c467496386b4b77ff2762 |
work_keys_str_mv |
AT giuseppequerques invivovisualizationofphotoreceptorlayerandlipofuscinaccumulationinstargardtamprsquosdiseaseandfundusflavimaculatusbyhighresolutionspectraldomainopticalcoherencetomography AT rosyprato invivovisualizationofphotoreceptorlayerandlipofuscinaccumulationinstargardtamprsquosdiseaseandfundusflavimaculatusbyhighresolutionspectraldomainopticalcoherencetomography AT gabrielcoscas invivovisualizationofphotoreceptorlayerandlipofuscinaccumulationinstargardtamprsquosdiseaseandfundusflavimaculatusbyhighresolutionspectraldomainopticalcoherencetomography AT etal invivovisualizationofphotoreceptorlayerandlipofuscinaccumulationinstargardtamprsquosdiseaseandfundusflavimaculatusbyhighresolutionspectraldomainopticalcoherencetomography |
_version_ |
1718403730799329280 |