Barren plateaus in quantum neural network training landscapes

Gradient-based hybrid quantum-classical algorithms are often initialised with random, unstructured guesses. Here, the authors show that this approach will fail in the long run, due to the exponentially-small probability of finding a large enough gradient along any direction.

Guardado en:
Detalles Bibliográficos
Autores principales: Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, Hartmut Neven
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/2d565792ea6b4691bd7767c8d897c439
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Gradient-based hybrid quantum-classical algorithms are often initialised with random, unstructured guesses. Here, the authors show that this approach will fail in the long run, due to the exponentially-small probability of finding a large enough gradient along any direction.