Barren plateaus in quantum neural network training landscapes
Gradient-based hybrid quantum-classical algorithms are often initialised with random, unstructured guesses. Here, the authors show that this approach will fail in the long run, due to the exponentially-small probability of finding a large enough gradient along any direction.
Guardado en:
Autores principales: | Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, Hartmut Neven |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2d565792ea6b4691bd7767c8d897c439 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Noise-induced barren plateaus in variational quantum algorithms
por: Samson Wang, et al.
Publicado: (2021) -
Power of data in quantum machine learning
por: Hsin-Yuan Huang, et al.
Publicado: (2021) -
Cost function dependent barren plateaus in shallow parametrized quantum circuits
por: M. Cerezo, et al.
Publicado: (2021) -
Decoding quantum errors with subspace expansions
por: Jarrod R. McClean, et al.
Publicado: (2020) -
Virtual Distillation for Quantum Error Mitigation
por: William J. Huggins, et al.
Publicado: (2021)