UNCONSTRAINED EAR RECOGNITION USING TRANSFORMERS

The advantages of the ears as a means of identification over other biometric modalities provided an avenue for researchers to conduct biometric recognition studies on state-of-the-art computing methods. This paper presented a deep learning pipeline for unconstrained ear recognition using a Transform...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Marwin Alejo
Formato: article
Lenguaje:EN
Publicado: Scientific Research Support Fund of Jordan (SRSF) and Princess Sumaya University for Technology (PSUT) 2021
Materias:
Acceso en línea:https://doaj.org/article/2d69ca20c56f4b8fae1155a925ccf202
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The advantages of the ears as a means of identification over other biometric modalities provided an avenue for researchers to conduct biometric recognition studies on state-of-the-art computing methods. This paper presented a deep learning pipeline for unconstrained ear recognition using a Transformer neural network: Vision Transformer (ViT) and Data-efficient image Transformers (DeiT). The ViT-Ear and DeiT-Ear models of this study achieved recognition accuracy comparable or more significant than the results of state-of-the-art CNN-based methods and other deep learning algorithms. This study also determined that the performance of Vision Transformer and Data-efficient image Transformer models work better than ResNets without using exhaustive data augmentation processes. Moreover, this study observed that the performance of ViT-Ear is nearly similar to other ViT-based biometric studies. [JJCIT 2021; 7(4.000): 326-336]