Variable Anisotropic Hardy Spaces with Variable Exponents
Let p(·) : ℝn → (0, ∞] be a variable exponent function satisfying the globally log-Hölder continuous and let Θ be a continuous multi-level ellipsoid cover of ℝn introduced by Dekel et al. [12]. In this article, we introduce highly geometric Hardy spaces Hp(·)(Θ) via the radial grand maximal function...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2d6d0498e3624958b869f2cd2228893a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2d6d0498e3624958b869f2cd2228893a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2d6d0498e3624958b869f2cd2228893a2021-12-05T14:10:38ZVariable Anisotropic Hardy Spaces with Variable Exponents2299-327410.1515/agms-2020-0124https://doaj.org/article/2d6d0498e3624958b869f2cd2228893a2021-07-01T00:00:00Zhttps://doi.org/10.1515/agms-2020-0124https://doaj.org/toc/2299-3274Let p(·) : ℝn → (0, ∞] be a variable exponent function satisfying the globally log-Hölder continuous and let Θ be a continuous multi-level ellipsoid cover of ℝn introduced by Dekel et al. [12]. In this article, we introduce highly geometric Hardy spaces Hp(·)(Θ) via the radial grand maximal function and then obtain its atomic decomposition, which generalizes that of Hardy spaces Hp(Θ) on ℝn with pointwise variable anisotropy of Dekel et al. [16] and variable anisotropic Hardy spaces of Liu et al. [24]. As an application, we establish the boundedness of variable anisotropic singular integral operators from Hp(·)(Θ) to Lp(·)(ℝn) in general and from Hp(·)(Θ) to itself under the moment condition, which generalizes the previous work of Bownik et al. [6] on Hp(Θ).Yang ZhenzhenYang YajuanSun JiaweiLi BaodeDe Gruyterarticlehardy spacecontinuous ellipsoid covermaximal functionatomic decompositionsingular integral operator42b3542b3042b2542b20AnalysisQA299.6-433ENAnalysis and Geometry in Metric Spaces, Vol 9, Iss 1, Pp 65-89 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
hardy space continuous ellipsoid cover maximal function atomic decomposition singular integral operator 42b35 42b30 42b25 42b20 Analysis QA299.6-433 |
spellingShingle |
hardy space continuous ellipsoid cover maximal function atomic decomposition singular integral operator 42b35 42b30 42b25 42b20 Analysis QA299.6-433 Yang Zhenzhen Yang Yajuan Sun Jiawei Li Baode Variable Anisotropic Hardy Spaces with Variable Exponents |
description |
Let p(·) : ℝn → (0, ∞] be a variable exponent function satisfying the globally log-Hölder continuous and let Θ be a continuous multi-level ellipsoid cover of ℝn introduced by Dekel et al. [12]. In this article, we introduce highly geometric Hardy spaces Hp(·)(Θ) via the radial grand maximal function and then obtain its atomic decomposition, which generalizes that of Hardy spaces Hp(Θ) on ℝn with pointwise variable anisotropy of Dekel et al. [16] and variable anisotropic Hardy spaces of Liu et al. [24]. As an application, we establish the boundedness of variable anisotropic singular integral operators from Hp(·)(Θ) to Lp(·)(ℝn) in general and from Hp(·)(Θ) to itself under the moment condition, which generalizes the previous work of Bownik et al. [6] on Hp(Θ). |
format |
article |
author |
Yang Zhenzhen Yang Yajuan Sun Jiawei Li Baode |
author_facet |
Yang Zhenzhen Yang Yajuan Sun Jiawei Li Baode |
author_sort |
Yang Zhenzhen |
title |
Variable Anisotropic Hardy Spaces with Variable Exponents |
title_short |
Variable Anisotropic Hardy Spaces with Variable Exponents |
title_full |
Variable Anisotropic Hardy Spaces with Variable Exponents |
title_fullStr |
Variable Anisotropic Hardy Spaces with Variable Exponents |
title_full_unstemmed |
Variable Anisotropic Hardy Spaces with Variable Exponents |
title_sort |
variable anisotropic hardy spaces with variable exponents |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/2d6d0498e3624958b869f2cd2228893a |
work_keys_str_mv |
AT yangzhenzhen variableanisotropichardyspaceswithvariableexponents AT yangyajuan variableanisotropichardyspaceswithvariableexponents AT sunjiawei variableanisotropichardyspaceswithvariableexponents AT libaode variableanisotropichardyspaceswithvariableexponents |
_version_ |
1718371889071521792 |