Variable Anisotropic Hardy Spaces with Variable Exponents

Let p(·) : ℝn → (0, ∞] be a variable exponent function satisfying the globally log-Hölder continuous and let Θ be a continuous multi-level ellipsoid cover of ℝn introduced by Dekel et al. [12]. In this article, we introduce highly geometric Hardy spaces Hp(·)(Θ) via the radial grand maximal function...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yang Zhenzhen, Yang Yajuan, Sun Jiawei, Li Baode
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/2d6d0498e3624958b869f2cd2228893a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2d6d0498e3624958b869f2cd2228893a
record_format dspace
spelling oai:doaj.org-article:2d6d0498e3624958b869f2cd2228893a2021-12-05T14:10:38ZVariable Anisotropic Hardy Spaces with Variable Exponents2299-327410.1515/agms-2020-0124https://doaj.org/article/2d6d0498e3624958b869f2cd2228893a2021-07-01T00:00:00Zhttps://doi.org/10.1515/agms-2020-0124https://doaj.org/toc/2299-3274Let p(·) : ℝn → (0, ∞] be a variable exponent function satisfying the globally log-Hölder continuous and let Θ be a continuous multi-level ellipsoid cover of ℝn introduced by Dekel et al. [12]. In this article, we introduce highly geometric Hardy spaces Hp(·)(Θ) via the radial grand maximal function and then obtain its atomic decomposition, which generalizes that of Hardy spaces Hp(Θ) on ℝn with pointwise variable anisotropy of Dekel et al. [16] and variable anisotropic Hardy spaces of Liu et al. [24]. As an application, we establish the boundedness of variable anisotropic singular integral operators from Hp(·)(Θ) to Lp(·)(ℝn) in general and from Hp(·)(Θ) to itself under the moment condition, which generalizes the previous work of Bownik et al. [6] on Hp(Θ).Yang ZhenzhenYang YajuanSun JiaweiLi BaodeDe Gruyterarticlehardy spacecontinuous ellipsoid covermaximal functionatomic decompositionsingular integral operator42b3542b3042b2542b20AnalysisQA299.6-433ENAnalysis and Geometry in Metric Spaces, Vol 9, Iss 1, Pp 65-89 (2021)
institution DOAJ
collection DOAJ
language EN
topic hardy space
continuous ellipsoid cover
maximal function
atomic decomposition
singular integral operator
42b35
42b30
42b25
42b20
Analysis
QA299.6-433
spellingShingle hardy space
continuous ellipsoid cover
maximal function
atomic decomposition
singular integral operator
42b35
42b30
42b25
42b20
Analysis
QA299.6-433
Yang Zhenzhen
Yang Yajuan
Sun Jiawei
Li Baode
Variable Anisotropic Hardy Spaces with Variable Exponents
description Let p(·) : ℝn → (0, ∞] be a variable exponent function satisfying the globally log-Hölder continuous and let Θ be a continuous multi-level ellipsoid cover of ℝn introduced by Dekel et al. [12]. In this article, we introduce highly geometric Hardy spaces Hp(·)(Θ) via the radial grand maximal function and then obtain its atomic decomposition, which generalizes that of Hardy spaces Hp(Θ) on ℝn with pointwise variable anisotropy of Dekel et al. [16] and variable anisotropic Hardy spaces of Liu et al. [24]. As an application, we establish the boundedness of variable anisotropic singular integral operators from Hp(·)(Θ) to Lp(·)(ℝn) in general and from Hp(·)(Θ) to itself under the moment condition, which generalizes the previous work of Bownik et al. [6] on Hp(Θ).
format article
author Yang Zhenzhen
Yang Yajuan
Sun Jiawei
Li Baode
author_facet Yang Zhenzhen
Yang Yajuan
Sun Jiawei
Li Baode
author_sort Yang Zhenzhen
title Variable Anisotropic Hardy Spaces with Variable Exponents
title_short Variable Anisotropic Hardy Spaces with Variable Exponents
title_full Variable Anisotropic Hardy Spaces with Variable Exponents
title_fullStr Variable Anisotropic Hardy Spaces with Variable Exponents
title_full_unstemmed Variable Anisotropic Hardy Spaces with Variable Exponents
title_sort variable anisotropic hardy spaces with variable exponents
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/2d6d0498e3624958b869f2cd2228893a
work_keys_str_mv AT yangzhenzhen variableanisotropichardyspaceswithvariableexponents
AT yangyajuan variableanisotropichardyspaceswithvariableexponents
AT sunjiawei variableanisotropichardyspaceswithvariableexponents
AT libaode variableanisotropichardyspaceswithvariableexponents
_version_ 1718371889071521792