Variable Anisotropic Hardy Spaces with Variable Exponents
Let p(·) : ℝn → (0, ∞] be a variable exponent function satisfying the globally log-Hölder continuous and let Θ be a continuous multi-level ellipsoid cover of ℝn introduced by Dekel et al. [12]. In this article, we introduce highly geometric Hardy spaces Hp(·)(Θ) via the radial grand maximal function...
Guardado en:
Autores principales: | Yang Zhenzhen, Yang Yajuan, Sun Jiawei, Li Baode |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2d6d0498e3624958b869f2cd2228893a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A note on maximal operators related to Laplace-Bessel differential operators on variable exponent Lebesgue spaces
por: Kaya Esra
Publicado: (2021) -
Variation inequalities for rough singular integrals and their commutators on Morrey spaces and Besov spaces
por: Zhang Xiao, et al.
Publicado: (2021) -
Weighted W1, p (·)-Regularity for Degenerate Elliptic Equations in Reifenberg Domains
por: Zhang Junqiang, et al.
Publicado: (2021) -
Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents
por: Wang Shengrong, et al.
Publicado: (2021) -
On the equivalence between weak BMO and the space of derivatives of the Zygmund class
por: Kwessi Eddy
Publicado: (2021)