Bayesian Inference under Small Sample Sizes Using General Noninformative Priors
This paper proposes a Bayesian inference method for problems with small sample sizes. A general type of noninformative prior is proposed to formulate the Bayesian posterior. It is shown that this type of prior can represent a broad range of priors such as classical noninformative priors and asymptot...
Guardado en:
Autores principales: | Jingjing He, Wei Wang, Min Huang, Shaohua Wang, Xuefei Guan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2d6daa1138754818bd80002dcb145d25 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Teaching: confidence, prediction and tolerance intervals in scientific practice: a tutorial on binary variables
por: Sonja Hartnack, et al.
Publicado: (2021) -
Objective Bayesian Estimation for Tweedie Exponential Dispersion Process
por: Weian Yan, et al.
Publicado: (2021) -
Use of external evidence for design and Bayesian analysis of clinical trials: a qualitative study of trialists’ views
por: Gemma L. Clayton, et al.
Publicado: (2021) -
Prior Exposure and Educational Environment towards Entrepreneurial Intention
por: Soria-Barreto,Karla, et al.
Publicado: (2017) -
Evaluating implementation outcomes (acceptability, adoption, and feasibility) of two initiatives to improve the medication prior authorization process
por: Laney K. Jones, et al.
Publicado: (2021)