Synthesis of armchair graphene nanoribbons from the 10,10′-dibromo-9,9′-bianthracene molecules on Ag(111): the role of organometallic intermediates

Abstract We investigate the bottom-up growth of N = 7 armchair graphene nanoribbons (7-AGNRs) from the 10,10′-dibromo-9,9′-bianthracene (DBBA) molecules on Ag(111) with the focus on the role of the organometallic (OM) intermediates. It is demonstrated that DBBA molecules on Ag(111) are partially deb...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: K. A. Simonov, A. V. Generalov, A. S. Vinogradov, G. I. Svirskiy, A. A. Cafolla, C. McGuinness, T. Taketsugu, A. Lyalin, N. Mårtensson, A. B. Preobrajenski
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2d721c46f6824e65b8fb648d4903fd47
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2d721c46f6824e65b8fb648d4903fd47
record_format dspace
spelling oai:doaj.org-article:2d721c46f6824e65b8fb648d4903fd472021-12-02T12:32:48ZSynthesis of armchair graphene nanoribbons from the 10,10′-dibromo-9,9′-bianthracene molecules on Ag(111): the role of organometallic intermediates10.1038/s41598-018-21704-32045-2322https://doaj.org/article/2d721c46f6824e65b8fb648d4903fd472018-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-21704-3https://doaj.org/toc/2045-2322Abstract We investigate the bottom-up growth of N = 7 armchair graphene nanoribbons (7-AGNRs) from the 10,10′-dibromo-9,9′-bianthracene (DBBA) molecules on Ag(111) with the focus on the role of the organometallic (OM) intermediates. It is demonstrated that DBBA molecules on Ag(111) are partially debrominated at room temperature and lose all bromine atoms at elevated temperatures. Similar to DBBA on Cu(111), debrominated molecules form OM chains on Ag(111). Nevertheless, in contrast with the Cu(111) substrate, formation of polyanthracene chains from OM intermediates via an Ullmann-type reaction is feasible on Ag(111). Cleavage of C–Ag bonds occurs before the thermal threshold for the surface-catalyzed activation of C–H bonds on Ag(111) is reached, while on Cu(111) activation of C–H bonds occurs in parallel with the cleavage of the stronger C–Cu bonds. Consequently, while OM intermediates obstruct the Ullmann reaction between DBBA molecules on the Cu(111) substrate, they are required for the formation of polyanthracene chains on Ag(111). If the Ullmann-type reaction on Ag(111) is inhibited, heating of the OM chains produces nanographenes instead. Heating of the polyanthracene chains produces 7-AGNRs, while heating of nanographenes causes the formation of the disordered structures with the possible admixture of short GNRs.K. A. SimonovA. V. GeneralovA. S. VinogradovG. I. SvirskiyA. A. CafollaC. McGuinnessT. TaketsuguA. LyalinN. MårtenssonA. B. PreobrajenskiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-12 (2018)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
K. A. Simonov
A. V. Generalov
A. S. Vinogradov
G. I. Svirskiy
A. A. Cafolla
C. McGuinness
T. Taketsugu
A. Lyalin
N. Mårtensson
A. B. Preobrajenski
Synthesis of armchair graphene nanoribbons from the 10,10′-dibromo-9,9′-bianthracene molecules on Ag(111): the role of organometallic intermediates
description Abstract We investigate the bottom-up growth of N = 7 armchair graphene nanoribbons (7-AGNRs) from the 10,10′-dibromo-9,9′-bianthracene (DBBA) molecules on Ag(111) with the focus on the role of the organometallic (OM) intermediates. It is demonstrated that DBBA molecules on Ag(111) are partially debrominated at room temperature and lose all bromine atoms at elevated temperatures. Similar to DBBA on Cu(111), debrominated molecules form OM chains on Ag(111). Nevertheless, in contrast with the Cu(111) substrate, formation of polyanthracene chains from OM intermediates via an Ullmann-type reaction is feasible on Ag(111). Cleavage of C–Ag bonds occurs before the thermal threshold for the surface-catalyzed activation of C–H bonds on Ag(111) is reached, while on Cu(111) activation of C–H bonds occurs in parallel with the cleavage of the stronger C–Cu bonds. Consequently, while OM intermediates obstruct the Ullmann reaction between DBBA molecules on the Cu(111) substrate, they are required for the formation of polyanthracene chains on Ag(111). If the Ullmann-type reaction on Ag(111) is inhibited, heating of the OM chains produces nanographenes instead. Heating of the polyanthracene chains produces 7-AGNRs, while heating of nanographenes causes the formation of the disordered structures with the possible admixture of short GNRs.
format article
author K. A. Simonov
A. V. Generalov
A. S. Vinogradov
G. I. Svirskiy
A. A. Cafolla
C. McGuinness
T. Taketsugu
A. Lyalin
N. Mårtensson
A. B. Preobrajenski
author_facet K. A. Simonov
A. V. Generalov
A. S. Vinogradov
G. I. Svirskiy
A. A. Cafolla
C. McGuinness
T. Taketsugu
A. Lyalin
N. Mårtensson
A. B. Preobrajenski
author_sort K. A. Simonov
title Synthesis of armchair graphene nanoribbons from the 10,10′-dibromo-9,9′-bianthracene molecules on Ag(111): the role of organometallic intermediates
title_short Synthesis of armchair graphene nanoribbons from the 10,10′-dibromo-9,9′-bianthracene molecules on Ag(111): the role of organometallic intermediates
title_full Synthesis of armchair graphene nanoribbons from the 10,10′-dibromo-9,9′-bianthracene molecules on Ag(111): the role of organometallic intermediates
title_fullStr Synthesis of armchair graphene nanoribbons from the 10,10′-dibromo-9,9′-bianthracene molecules on Ag(111): the role of organometallic intermediates
title_full_unstemmed Synthesis of armchair graphene nanoribbons from the 10,10′-dibromo-9,9′-bianthracene molecules on Ag(111): the role of organometallic intermediates
title_sort synthesis of armchair graphene nanoribbons from the 10,10′-dibromo-9,9′-bianthracene molecules on ag(111): the role of organometallic intermediates
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/2d721c46f6824e65b8fb648d4903fd47
work_keys_str_mv AT kasimonov synthesisofarmchairgraphenenanoribbonsfromthe1010dibromo99bianthracenemoleculesonag111theroleoforganometallicintermediates
AT avgeneralov synthesisofarmchairgraphenenanoribbonsfromthe1010dibromo99bianthracenemoleculesonag111theroleoforganometallicintermediates
AT asvinogradov synthesisofarmchairgraphenenanoribbonsfromthe1010dibromo99bianthracenemoleculesonag111theroleoforganometallicintermediates
AT gisvirskiy synthesisofarmchairgraphenenanoribbonsfromthe1010dibromo99bianthracenemoleculesonag111theroleoforganometallicintermediates
AT aacafolla synthesisofarmchairgraphenenanoribbonsfromthe1010dibromo99bianthracenemoleculesonag111theroleoforganometallicintermediates
AT cmcguinness synthesisofarmchairgraphenenanoribbonsfromthe1010dibromo99bianthracenemoleculesonag111theroleoforganometallicintermediates
AT ttaketsugu synthesisofarmchairgraphenenanoribbonsfromthe1010dibromo99bianthracenemoleculesonag111theroleoforganometallicintermediates
AT alyalin synthesisofarmchairgraphenenanoribbonsfromthe1010dibromo99bianthracenemoleculesonag111theroleoforganometallicintermediates
AT nmartensson synthesisofarmchairgraphenenanoribbonsfromthe1010dibromo99bianthracenemoleculesonag111theroleoforganometallicintermediates
AT abpreobrajenski synthesisofarmchairgraphenenanoribbonsfromthe1010dibromo99bianthracenemoleculesonag111theroleoforganometallicintermediates
_version_ 1718393968677355520