An Interpretable Early Dynamic Sequential Predictor for Sepsis-Induced Coagulopathy Progression in the Real-World Using Machine Learning

Sepsis-associated coagulation dysfunction greatly increases the mortality of sepsis. Irregular clinical time-series data remains a major challenge for AI medical applications. To early detect and manage sepsis-induced coagulopathy (SIC) and sepsis-associated disseminated intravascular coagulation (D...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ruixia Cui, Wenbo Hua, Kai Qu, Heran Yang, Yingmu Tong, Qinglin Li, Hai Wang, Yanfen Ma, Sinan Liu, Ting Lin, Jingyao Zhang, Jian Sun, Chang Liu
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
SIC
Acceso en línea:https://doaj.org/article/2d7495b4717845858bc66a17cab36f98
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2d7495b4717845858bc66a17cab36f98
record_format dspace
spelling oai:doaj.org-article:2d7495b4717845858bc66a17cab36f982021-12-03T07:11:20ZAn Interpretable Early Dynamic Sequential Predictor for Sepsis-Induced Coagulopathy Progression in the Real-World Using Machine Learning2296-858X10.3389/fmed.2021.775047https://doaj.org/article/2d7495b4717845858bc66a17cab36f982021-12-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fmed.2021.775047/fullhttps://doaj.org/toc/2296-858XSepsis-associated coagulation dysfunction greatly increases the mortality of sepsis. Irregular clinical time-series data remains a major challenge for AI medical applications. To early detect and manage sepsis-induced coagulopathy (SIC) and sepsis-associated disseminated intravascular coagulation (DIC), we developed an interpretable real-time sequential warning model toward real-world irregular data. Eight machine learning models including novel algorithms were devised to detect SIC and sepsis-associated DIC 8n (1 ≤ n ≤ 6) hours prior to its onset. Models were developed on Xi'an Jiaotong University Medical College (XJTUMC) and verified on Beth Israel Deaconess Medical Center (BIDMC). A total of 12,154 SIC and 7,878 International Society on Thrombosis and Haemostasis (ISTH) overt-DIC labels were annotated according to the SIC and ISTH overt-DIC scoring systems in train set. The area under the receiver operating characteristic curve (AUROC) were used as model evaluation metrics. The eXtreme Gradient Boosting (XGBoost) model can predict SIC and sepsis-associated DIC events up to 48 h earlier with an AUROC of 0.929 and 0.910, respectively, and even reached 0.973 and 0.955 at 8 h earlier, achieving the highest performance to date. The novel ODE-RNN model achieved continuous prediction at arbitrary time points, and with an AUROC of 0.962 and 0.936 for SIC and DIC predicted 8 h earlier, respectively. In conclusion, our model can predict the sepsis-associated SIC and DIC onset up to 48 h in advance, which helps maximize the time window for early management by physicians.Ruixia CuiRuixia CuiWenbo HuaKai QuHeran YangYingmu TongYingmu TongQinglin LiQinglin LiHai WangHai WangYanfen MaSinan LiuSinan LiuTing LinTing LinJingyao ZhangJingyao ZhangJingyao ZhangJian SunChang LiuChang LiuChang LiuFrontiers Media S.A.articleSICsepsis-associated DICirregular time-series dataearly real-time predictionmachine learningMedicine (General)R5-920ENFrontiers in Medicine, Vol 8 (2021)
institution DOAJ
collection DOAJ
language EN
topic SIC
sepsis-associated DIC
irregular time-series data
early real-time prediction
machine learning
Medicine (General)
R5-920
spellingShingle SIC
sepsis-associated DIC
irregular time-series data
early real-time prediction
machine learning
Medicine (General)
R5-920
Ruixia Cui
Ruixia Cui
Wenbo Hua
Kai Qu
Heran Yang
Yingmu Tong
Yingmu Tong
Qinglin Li
Qinglin Li
Hai Wang
Hai Wang
Yanfen Ma
Sinan Liu
Sinan Liu
Ting Lin
Ting Lin
Jingyao Zhang
Jingyao Zhang
Jingyao Zhang
Jian Sun
Chang Liu
Chang Liu
Chang Liu
An Interpretable Early Dynamic Sequential Predictor for Sepsis-Induced Coagulopathy Progression in the Real-World Using Machine Learning
description Sepsis-associated coagulation dysfunction greatly increases the mortality of sepsis. Irregular clinical time-series data remains a major challenge for AI medical applications. To early detect and manage sepsis-induced coagulopathy (SIC) and sepsis-associated disseminated intravascular coagulation (DIC), we developed an interpretable real-time sequential warning model toward real-world irregular data. Eight machine learning models including novel algorithms were devised to detect SIC and sepsis-associated DIC 8n (1 ≤ n ≤ 6) hours prior to its onset. Models were developed on Xi'an Jiaotong University Medical College (XJTUMC) and verified on Beth Israel Deaconess Medical Center (BIDMC). A total of 12,154 SIC and 7,878 International Society on Thrombosis and Haemostasis (ISTH) overt-DIC labels were annotated according to the SIC and ISTH overt-DIC scoring systems in train set. The area under the receiver operating characteristic curve (AUROC) were used as model evaluation metrics. The eXtreme Gradient Boosting (XGBoost) model can predict SIC and sepsis-associated DIC events up to 48 h earlier with an AUROC of 0.929 and 0.910, respectively, and even reached 0.973 and 0.955 at 8 h earlier, achieving the highest performance to date. The novel ODE-RNN model achieved continuous prediction at arbitrary time points, and with an AUROC of 0.962 and 0.936 for SIC and DIC predicted 8 h earlier, respectively. In conclusion, our model can predict the sepsis-associated SIC and DIC onset up to 48 h in advance, which helps maximize the time window for early management by physicians.
format article
author Ruixia Cui
Ruixia Cui
Wenbo Hua
Kai Qu
Heran Yang
Yingmu Tong
Yingmu Tong
Qinglin Li
Qinglin Li
Hai Wang
Hai Wang
Yanfen Ma
Sinan Liu
Sinan Liu
Ting Lin
Ting Lin
Jingyao Zhang
Jingyao Zhang
Jingyao Zhang
Jian Sun
Chang Liu
Chang Liu
Chang Liu
author_facet Ruixia Cui
Ruixia Cui
Wenbo Hua
Kai Qu
Heran Yang
Yingmu Tong
Yingmu Tong
Qinglin Li
Qinglin Li
Hai Wang
Hai Wang
Yanfen Ma
Sinan Liu
Sinan Liu
Ting Lin
Ting Lin
Jingyao Zhang
Jingyao Zhang
Jingyao Zhang
Jian Sun
Chang Liu
Chang Liu
Chang Liu
author_sort Ruixia Cui
title An Interpretable Early Dynamic Sequential Predictor for Sepsis-Induced Coagulopathy Progression in the Real-World Using Machine Learning
title_short An Interpretable Early Dynamic Sequential Predictor for Sepsis-Induced Coagulopathy Progression in the Real-World Using Machine Learning
title_full An Interpretable Early Dynamic Sequential Predictor for Sepsis-Induced Coagulopathy Progression in the Real-World Using Machine Learning
title_fullStr An Interpretable Early Dynamic Sequential Predictor for Sepsis-Induced Coagulopathy Progression in the Real-World Using Machine Learning
title_full_unstemmed An Interpretable Early Dynamic Sequential Predictor for Sepsis-Induced Coagulopathy Progression in the Real-World Using Machine Learning
title_sort interpretable early dynamic sequential predictor for sepsis-induced coagulopathy progression in the real-world using machine learning
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/2d7495b4717845858bc66a17cab36f98
work_keys_str_mv AT ruixiacui aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT ruixiacui aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT wenbohua aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT kaiqu aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT heranyang aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT yingmutong aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT yingmutong aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT qinglinli aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT qinglinli aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT haiwang aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT haiwang aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT yanfenma aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT sinanliu aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT sinanliu aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT tinglin aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT tinglin aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT jingyaozhang aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT jingyaozhang aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT jingyaozhang aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT jiansun aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT changliu aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT changliu aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT changliu aninterpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT ruixiacui interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT ruixiacui interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT wenbohua interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT kaiqu interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT heranyang interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT yingmutong interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT yingmutong interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT qinglinli interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT qinglinli interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT haiwang interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT haiwang interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT yanfenma interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT sinanliu interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT sinanliu interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT tinglin interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT tinglin interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT jingyaozhang interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT jingyaozhang interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT jingyaozhang interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT jiansun interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT changliu interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT changliu interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
AT changliu interpretableearlydynamicsequentialpredictorforsepsisinducedcoagulopathyprogressionintherealworldusingmachinelearning
_version_ 1718373862714900480