Genomic data integration by WON-PARAFAC identifies interpretable factors for predicting drug-sensitivity in vivo
Integrative analyses that link molecular data to treatment sensitivity are essential for precision medicine. Here the authors introduce WON-PARAFAC to integrate multiple genomics data to identify sparse and interpretable factors.
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2d768969dca140ab86ef9a6db53fb9f6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2d768969dca140ab86ef9a6db53fb9f6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2d768969dca140ab86ef9a6db53fb9f62021-12-02T16:57:24ZGenomic data integration by WON-PARAFAC identifies interpretable factors for predicting drug-sensitivity in vivo10.1038/s41467-019-13027-22041-1723https://doaj.org/article/2d768969dca140ab86ef9a6db53fb9f62019-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13027-2https://doaj.org/toc/2041-1723Integrative analyses that link molecular data to treatment sensitivity are essential for precision medicine. Here the authors introduce WON-PARAFAC to integrate multiple genomics data to identify sparse and interpretable factors.Yongsoo KimTycho BismeijerWilbert ZwartLodewyk F. A. WesselsDaniel J. VisNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-12 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Yongsoo Kim Tycho Bismeijer Wilbert Zwart Lodewyk F. A. Wessels Daniel J. Vis Genomic data integration by WON-PARAFAC identifies interpretable factors for predicting drug-sensitivity in vivo |
description |
Integrative analyses that link molecular data to treatment sensitivity are essential for precision medicine. Here the authors introduce WON-PARAFAC to integrate multiple genomics data to identify sparse and interpretable factors. |
format |
article |
author |
Yongsoo Kim Tycho Bismeijer Wilbert Zwart Lodewyk F. A. Wessels Daniel J. Vis |
author_facet |
Yongsoo Kim Tycho Bismeijer Wilbert Zwart Lodewyk F. A. Wessels Daniel J. Vis |
author_sort |
Yongsoo Kim |
title |
Genomic data integration by WON-PARAFAC identifies interpretable factors for predicting drug-sensitivity in vivo |
title_short |
Genomic data integration by WON-PARAFAC identifies interpretable factors for predicting drug-sensitivity in vivo |
title_full |
Genomic data integration by WON-PARAFAC identifies interpretable factors for predicting drug-sensitivity in vivo |
title_fullStr |
Genomic data integration by WON-PARAFAC identifies interpretable factors for predicting drug-sensitivity in vivo |
title_full_unstemmed |
Genomic data integration by WON-PARAFAC identifies interpretable factors for predicting drug-sensitivity in vivo |
title_sort |
genomic data integration by won-parafac identifies interpretable factors for predicting drug-sensitivity in vivo |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/2d768969dca140ab86ef9a6db53fb9f6 |
work_keys_str_mv |
AT yongsookim genomicdataintegrationbywonparafacidentifiesinterpretablefactorsforpredictingdrugsensitivityinvivo AT tychobismeijer genomicdataintegrationbywonparafacidentifiesinterpretablefactorsforpredictingdrugsensitivityinvivo AT wilbertzwart genomicdataintegrationbywonparafacidentifiesinterpretablefactorsforpredictingdrugsensitivityinvivo AT lodewykfawessels genomicdataintegrationbywonparafacidentifiesinterpretablefactorsforpredictingdrugsensitivityinvivo AT danieljvis genomicdataintegrationbywonparafacidentifiesinterpretablefactorsforpredictingdrugsensitivityinvivo |
_version_ |
1718382554948567040 |