Genomic data integration by WON-PARAFAC identifies interpretable factors for predicting drug-sensitivity in vivo

Integrative analyses that link molecular data to treatment sensitivity are essential for precision medicine. Here the authors introduce WON-PARAFAC to integrate multiple genomics data to identify sparse and interpretable factors.

Guardado en:
Detalles Bibliográficos
Autores principales: Yongsoo Kim, Tycho Bismeijer, Wilbert Zwart, Lodewyk F. A. Wessels, Daniel J. Vis
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/2d768969dca140ab86ef9a6db53fb9f6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2d768969dca140ab86ef9a6db53fb9f6
record_format dspace
spelling oai:doaj.org-article:2d768969dca140ab86ef9a6db53fb9f62021-12-02T16:57:24ZGenomic data integration by WON-PARAFAC identifies interpretable factors for predicting drug-sensitivity in vivo10.1038/s41467-019-13027-22041-1723https://doaj.org/article/2d768969dca140ab86ef9a6db53fb9f62019-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13027-2https://doaj.org/toc/2041-1723Integrative analyses that link molecular data to treatment sensitivity are essential for precision medicine. Here the authors introduce WON-PARAFAC to integrate multiple genomics data to identify sparse and interpretable factors.Yongsoo KimTycho BismeijerWilbert ZwartLodewyk F. A. WesselsDaniel J. VisNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-12 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Yongsoo Kim
Tycho Bismeijer
Wilbert Zwart
Lodewyk F. A. Wessels
Daniel J. Vis
Genomic data integration by WON-PARAFAC identifies interpretable factors for predicting drug-sensitivity in vivo
description Integrative analyses that link molecular data to treatment sensitivity are essential for precision medicine. Here the authors introduce WON-PARAFAC to integrate multiple genomics data to identify sparse and interpretable factors.
format article
author Yongsoo Kim
Tycho Bismeijer
Wilbert Zwart
Lodewyk F. A. Wessels
Daniel J. Vis
author_facet Yongsoo Kim
Tycho Bismeijer
Wilbert Zwart
Lodewyk F. A. Wessels
Daniel J. Vis
author_sort Yongsoo Kim
title Genomic data integration by WON-PARAFAC identifies interpretable factors for predicting drug-sensitivity in vivo
title_short Genomic data integration by WON-PARAFAC identifies interpretable factors for predicting drug-sensitivity in vivo
title_full Genomic data integration by WON-PARAFAC identifies interpretable factors for predicting drug-sensitivity in vivo
title_fullStr Genomic data integration by WON-PARAFAC identifies interpretable factors for predicting drug-sensitivity in vivo
title_full_unstemmed Genomic data integration by WON-PARAFAC identifies interpretable factors for predicting drug-sensitivity in vivo
title_sort genomic data integration by won-parafac identifies interpretable factors for predicting drug-sensitivity in vivo
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/2d768969dca140ab86ef9a6db53fb9f6
work_keys_str_mv AT yongsookim genomicdataintegrationbywonparafacidentifiesinterpretablefactorsforpredictingdrugsensitivityinvivo
AT tychobismeijer genomicdataintegrationbywonparafacidentifiesinterpretablefactorsforpredictingdrugsensitivityinvivo
AT wilbertzwart genomicdataintegrationbywonparafacidentifiesinterpretablefactorsforpredictingdrugsensitivityinvivo
AT lodewykfawessels genomicdataintegrationbywonparafacidentifiesinterpretablefactorsforpredictingdrugsensitivityinvivo
AT danieljvis genomicdataintegrationbywonparafacidentifiesinterpretablefactorsforpredictingdrugsensitivityinvivo
_version_ 1718382554948567040