Genomic data integration by WON-PARAFAC identifies interpretable factors for predicting drug-sensitivity in vivo
Integrative analyses that link molecular data to treatment sensitivity are essential for precision medicine. Here the authors introduce WON-PARAFAC to integrate multiple genomics data to identify sparse and interpretable factors.
Guardado en:
Autores principales: | Yongsoo Kim, Tycho Bismeijer, Wilbert Zwart, Lodewyk F. A. Wessels, Daniel J. Vis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2d768969dca140ab86ef9a6db53fb9f6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Guest Editorial: "It's February. It Won't Last"
por: David W Jardine
Publicado: (2018) -
Interactions in Ternary Aqueous Solutions of NMA and Osmolytes—PARAFAC Decomposition of FTIR Spectra Series
por: Emilia Kaczkowska, et al.
Publicado: (2021) -
Fluorescence-based characterisation of selected edible insect species: Excitation emission matrix (EEM) and parallel factor (PARAFAC) analysis
por: G. Rossi, et al.
Publicado: (2021) -
Breast adipocyte size associates with ipsilateral invasive breast cancer risk after ductal carcinoma in situ
por: Mathilde M. M. Almekinders, et al.
Publicado: (2021) -
When whole-genome alignments just won't work: kSNP v2 software for alignment-free SNP discovery and phylogenetics of hundreds of microbial genomes.
por: Shea N Gardner, et al.
Publicado: (2013)