2,4,6-Trinitrotoluene Induces Apoptosis via ROS-Regulated Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in HepG2 and Hep3B Cells
Abstract 2,4,6-trinitrotoluene (TNT) has been reported to cause numerous adverse effects. However, the detailed molecular mechanisms underlying TNT-induced liver toxicity need to be elucidated. In this study, we used HepG2 (p53wt) and Hep3B (p53null) cell lines to investigate the cytotoxic effects o...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2d7850ccc6cf4d3d9a403c8a6c925165 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2d7850ccc6cf4d3d9a403c8a6c925165 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2d7850ccc6cf4d3d9a403c8a6c9251652021-12-02T15:05:45Z2,4,6-Trinitrotoluene Induces Apoptosis via ROS-Regulated Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in HepG2 and Hep3B Cells10.1038/s41598-017-08308-z2045-2322https://doaj.org/article/2d7850ccc6cf4d3d9a403c8a6c9251652017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-08308-zhttps://doaj.org/toc/2045-2322Abstract 2,4,6-trinitrotoluene (TNT) has been reported to cause numerous adverse effects. However, the detailed molecular mechanisms underlying TNT-induced liver toxicity need to be elucidated. In this study, we used HepG2 (p53wt) and Hep3B (p53null) cell lines to investigate the cytotoxic effects of TNT. At first, we found that TNT significantly decreased cell viability and induced DNA damage. Thereafter, through transcriptomic analysis, we observed that the diverse biological functions affected included mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Mitochondrial dysfunction was evidenced by the loss of mitochondrial membrane potential, increased expression of cleaved-caspase-9&-3 and increased caspase-3/7 activity, indicating that apoptosis had occurred. In addition, the expressions of some ER stress-related proteins had increased. Next, we investigated the role of reactive oxygen species (ROS) in TNT-induced cellular toxicity. The levels of DNA damage, mitochondrial dysfunction, ER stress and apoptosis were alleviated when the cells were pretreated with N-acetyl-cysteine (NAC). These results indicated that TNT caused the ROS dependent apoptosis via ER stress and mitochondrial dysfunction. Finally, the cells transfected with CHOP siRNA significantly reversed the TNT-induced apoptosis, which indicated that ER stress led to apoptosis. Overall, we examined TNT-induced apoptosis via ROS dependent mitochondrial dysfunction and ER stress in HepG2 and Hep3B cells.Hung-Yu LiaoChih-Ming KaoChao-Ling YaoPo-Wei ChiuChun-Chen YaoSsu-Ching ChenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Hung-Yu Liao Chih-Ming Kao Chao-Ling Yao Po-Wei Chiu Chun-Chen Yao Ssu-Ching Chen 2,4,6-Trinitrotoluene Induces Apoptosis via ROS-Regulated Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in HepG2 and Hep3B Cells |
description |
Abstract 2,4,6-trinitrotoluene (TNT) has been reported to cause numerous adverse effects. However, the detailed molecular mechanisms underlying TNT-induced liver toxicity need to be elucidated. In this study, we used HepG2 (p53wt) and Hep3B (p53null) cell lines to investigate the cytotoxic effects of TNT. At first, we found that TNT significantly decreased cell viability and induced DNA damage. Thereafter, through transcriptomic analysis, we observed that the diverse biological functions affected included mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Mitochondrial dysfunction was evidenced by the loss of mitochondrial membrane potential, increased expression of cleaved-caspase-9&-3 and increased caspase-3/7 activity, indicating that apoptosis had occurred. In addition, the expressions of some ER stress-related proteins had increased. Next, we investigated the role of reactive oxygen species (ROS) in TNT-induced cellular toxicity. The levels of DNA damage, mitochondrial dysfunction, ER stress and apoptosis were alleviated when the cells were pretreated with N-acetyl-cysteine (NAC). These results indicated that TNT caused the ROS dependent apoptosis via ER stress and mitochondrial dysfunction. Finally, the cells transfected with CHOP siRNA significantly reversed the TNT-induced apoptosis, which indicated that ER stress led to apoptosis. Overall, we examined TNT-induced apoptosis via ROS dependent mitochondrial dysfunction and ER stress in HepG2 and Hep3B cells. |
format |
article |
author |
Hung-Yu Liao Chih-Ming Kao Chao-Ling Yao Po-Wei Chiu Chun-Chen Yao Ssu-Ching Chen |
author_facet |
Hung-Yu Liao Chih-Ming Kao Chao-Ling Yao Po-Wei Chiu Chun-Chen Yao Ssu-Ching Chen |
author_sort |
Hung-Yu Liao |
title |
2,4,6-Trinitrotoluene Induces Apoptosis via ROS-Regulated Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in HepG2 and Hep3B Cells |
title_short |
2,4,6-Trinitrotoluene Induces Apoptosis via ROS-Regulated Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in HepG2 and Hep3B Cells |
title_full |
2,4,6-Trinitrotoluene Induces Apoptosis via ROS-Regulated Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in HepG2 and Hep3B Cells |
title_fullStr |
2,4,6-Trinitrotoluene Induces Apoptosis via ROS-Regulated Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in HepG2 and Hep3B Cells |
title_full_unstemmed |
2,4,6-Trinitrotoluene Induces Apoptosis via ROS-Regulated Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in HepG2 and Hep3B Cells |
title_sort |
2,4,6-trinitrotoluene induces apoptosis via ros-regulated mitochondrial dysfunction and endoplasmic reticulum stress in hepg2 and hep3b cells |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/2d7850ccc6cf4d3d9a403c8a6c925165 |
work_keys_str_mv |
AT hungyuliao 246trinitrotolueneinducesapoptosisviarosregulatedmitochondrialdysfunctionandendoplasmicreticulumstressinhepg2andhep3bcells AT chihmingkao 246trinitrotolueneinducesapoptosisviarosregulatedmitochondrialdysfunctionandendoplasmicreticulumstressinhepg2andhep3bcells AT chaolingyao 246trinitrotolueneinducesapoptosisviarosregulatedmitochondrialdysfunctionandendoplasmicreticulumstressinhepg2andhep3bcells AT poweichiu 246trinitrotolueneinducesapoptosisviarosregulatedmitochondrialdysfunctionandendoplasmicreticulumstressinhepg2andhep3bcells AT chunchenyao 246trinitrotolueneinducesapoptosisviarosregulatedmitochondrialdysfunctionandendoplasmicreticulumstressinhepg2andhep3bcells AT ssuchingchen 246trinitrotolueneinducesapoptosisviarosregulatedmitochondrialdysfunctionandendoplasmicreticulumstressinhepg2andhep3bcells |
_version_ |
1718388694426058752 |