Acute environmental temperature variation affects brain protein expression, anxiety and explorative behaviour in adult zebrafish

Abstract This study investigated the effect of 4-d acute thermal treatments at 18 °C, 26 °C (control) and 34 °C on the nervous system of adult zebrafish (Danio rerio) using a multidisciplinary approach based on behavioural tests and brain proteomic analysis. The behavioural variations induced by the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: S. Nonnis, E. Angiulli, E. Maffioli, F. Frabetti, A. Negri, C. Cioni, E. Alleva, V. Romeo, G. Tedeschi, M. Toni
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2d7dfdab72604ca88d410e260e135036
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2d7dfdab72604ca88d410e260e135036
record_format dspace
spelling oai:doaj.org-article:2d7dfdab72604ca88d410e260e1350362021-12-02T13:57:25ZAcute environmental temperature variation affects brain protein expression, anxiety and explorative behaviour in adult zebrafish10.1038/s41598-021-81804-52045-2322https://doaj.org/article/2d7dfdab72604ca88d410e260e1350362021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-81804-5https://doaj.org/toc/2045-2322Abstract This study investigated the effect of 4-d acute thermal treatments at 18 °C, 26 °C (control) and 34 °C on the nervous system of adult zebrafish (Danio rerio) using a multidisciplinary approach based on behavioural tests and brain proteomic analysis. The behavioural variations induced by thermal treatment were investigated using five different tests, the novel tank diving, light and dark preference, social preference, mirror biting, and Y-Maze tests, which are standard paradigms specifically tailored for zebrafish to assess their anxiety-like behaviour, boldness, social preference, aggressiveness, and explorative behaviour, respectively. Proteomic data revealed that several proteins involved in energy metabolism, messenger RNA translation, protein synthesis, folding and degradation, cytoskeleton organisation and synaptic vesiculation are regulated differently at extreme temperatures. The results showed that anxiety-like behaviours increase in zebrafish at 18 °C compared to those at 26 °C or 34 °C, whereas anxiety-related protein signalling pathways are downregulated. Moreover, treatments at both 18 °C and 34 °C affect the exploratory behaviour that appears not to be modulated by past experiences, suggesting the impairment of fish cognitive abilities. This study is the continuation of our previous work on the effect of 21-d chronic treatment at the same constant temperature level and will enable the comparison of acute and chronic treatment effects on the nervous system function in adult zebrafish.S. NonnisE. AngiulliE. MaffioliF. FrabettiA. NegriC. CioniE. AllevaV. RomeoG. TedeschiM. ToniNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-21 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
S. Nonnis
E. Angiulli
E. Maffioli
F. Frabetti
A. Negri
C. Cioni
E. Alleva
V. Romeo
G. Tedeschi
M. Toni
Acute environmental temperature variation affects brain protein expression, anxiety and explorative behaviour in adult zebrafish
description Abstract This study investigated the effect of 4-d acute thermal treatments at 18 °C, 26 °C (control) and 34 °C on the nervous system of adult zebrafish (Danio rerio) using a multidisciplinary approach based on behavioural tests and brain proteomic analysis. The behavioural variations induced by thermal treatment were investigated using five different tests, the novel tank diving, light and dark preference, social preference, mirror biting, and Y-Maze tests, which are standard paradigms specifically tailored for zebrafish to assess their anxiety-like behaviour, boldness, social preference, aggressiveness, and explorative behaviour, respectively. Proteomic data revealed that several proteins involved in energy metabolism, messenger RNA translation, protein synthesis, folding and degradation, cytoskeleton organisation and synaptic vesiculation are regulated differently at extreme temperatures. The results showed that anxiety-like behaviours increase in zebrafish at 18 °C compared to those at 26 °C or 34 °C, whereas anxiety-related protein signalling pathways are downregulated. Moreover, treatments at both 18 °C and 34 °C affect the exploratory behaviour that appears not to be modulated by past experiences, suggesting the impairment of fish cognitive abilities. This study is the continuation of our previous work on the effect of 21-d chronic treatment at the same constant temperature level and will enable the comparison of acute and chronic treatment effects on the nervous system function in adult zebrafish.
format article
author S. Nonnis
E. Angiulli
E. Maffioli
F. Frabetti
A. Negri
C. Cioni
E. Alleva
V. Romeo
G. Tedeschi
M. Toni
author_facet S. Nonnis
E. Angiulli
E. Maffioli
F. Frabetti
A. Negri
C. Cioni
E. Alleva
V. Romeo
G. Tedeschi
M. Toni
author_sort S. Nonnis
title Acute environmental temperature variation affects brain protein expression, anxiety and explorative behaviour in adult zebrafish
title_short Acute environmental temperature variation affects brain protein expression, anxiety and explorative behaviour in adult zebrafish
title_full Acute environmental temperature variation affects brain protein expression, anxiety and explorative behaviour in adult zebrafish
title_fullStr Acute environmental temperature variation affects brain protein expression, anxiety and explorative behaviour in adult zebrafish
title_full_unstemmed Acute environmental temperature variation affects brain protein expression, anxiety and explorative behaviour in adult zebrafish
title_sort acute environmental temperature variation affects brain protein expression, anxiety and explorative behaviour in adult zebrafish
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/2d7dfdab72604ca88d410e260e135036
work_keys_str_mv AT snonnis acuteenvironmentaltemperaturevariationaffectsbrainproteinexpressionanxietyandexplorativebehaviourinadultzebrafish
AT eangiulli acuteenvironmentaltemperaturevariationaffectsbrainproteinexpressionanxietyandexplorativebehaviourinadultzebrafish
AT emaffioli acuteenvironmentaltemperaturevariationaffectsbrainproteinexpressionanxietyandexplorativebehaviourinadultzebrafish
AT ffrabetti acuteenvironmentaltemperaturevariationaffectsbrainproteinexpressionanxietyandexplorativebehaviourinadultzebrafish
AT anegri acuteenvironmentaltemperaturevariationaffectsbrainproteinexpressionanxietyandexplorativebehaviourinadultzebrafish
AT ccioni acuteenvironmentaltemperaturevariationaffectsbrainproteinexpressionanxietyandexplorativebehaviourinadultzebrafish
AT ealleva acuteenvironmentaltemperaturevariationaffectsbrainproteinexpressionanxietyandexplorativebehaviourinadultzebrafish
AT vromeo acuteenvironmentaltemperaturevariationaffectsbrainproteinexpressionanxietyandexplorativebehaviourinadultzebrafish
AT gtedeschi acuteenvironmentaltemperaturevariationaffectsbrainproteinexpressionanxietyandexplorativebehaviourinadultzebrafish
AT mtoni acuteenvironmentaltemperaturevariationaffectsbrainproteinexpressionanxietyandexplorativebehaviourinadultzebrafish
_version_ 1718392312696930304