Practical Aspects of the Design and Use of the Artificial Neural Networks in Materials Engineering
Artificial neural networks are an effective and frequently used modelling method in regression and classification tasks in the area of steels and metal alloys. New publications show examples of the use of artificial neural networks in this area, which appear regularly. The paper presents an overview...
Guardado en:
Autores principales: | Wojciech Sitek, Jacek Trzaska |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2d7e5d90783744eda498fec3477c261a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application of an Artificial Neural Network to Develop Fracture Toughness Predictor of Ferritic Steels Based on Tensile Test Results
por: Kenichi Ishihara, et al.
Publicado: (2021) -
Microstructural Classification of Bainitic Subclasses in Low-Carbon Multi-Phase Steels Using Machine Learning Techniques
por: Martin Müller, et al.
Publicado: (2021) -
Investigation of the Extrapolation Capability of an Artificial Neural Network Algorithm in Combination with Process Signals in Resistance Spot Welding of Advanced High-Strength Steels
por: Bassel El-Sari, et al.
Publicado: (2021) -
A Fuzzy Evaluation of Tool Materials in the Turning of Marine Steels
por: Qingzhong Xu, et al.
Publicado: (2021) -
Porosity Prediction of Porous Materials Deposited by Semi-Molten Spraying Particles
por: Jian-Tao Yao, et al.
Publicado: (2021)