Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy

Applied physics: New technique for oxide interfaces Recent advances in synthesizing and engineering oxide interfaces and heterostructures have provided a powerful strategy for creating new artificial structures exhibiting phenomena not possible in other materials form. Now Professor Xiaoxing Xi at T...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Qingyu Lei, Maryam Golalikhani, Bruce A. Davidson, Guozhen Liu, Darrell G. Schlom, Qiao Qiao, Yimei Zhu, Ravini U. Chandrasena, Weibing Yang, Alexander X. Gray, Elke Arenholz, Andrew K. Farrar, Dmitri A. Tenne, Minhui Hu, Jiandong Guo, Rakesh K. Singh, Xiaoxing Xi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Acceso en línea:https://doaj.org/article/2d8ef43026114075a8236793eab37b9a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2d8ef43026114075a8236793eab37b9a
record_format dspace
spelling oai:doaj.org-article:2d8ef43026114075a8236793eab37b9a2021-12-02T16:05:45ZConstructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy10.1038/s41535-017-0015-x2397-4648https://doaj.org/article/2d8ef43026114075a8236793eab37b9a2017-02-01T00:00:00Zhttps://doi.org/10.1038/s41535-017-0015-xhttps://doaj.org/toc/2397-4648Applied physics: New technique for oxide interfaces Recent advances in synthesizing and engineering oxide interfaces and heterostructures have provided a powerful strategy for creating new artificial structures exhibiting phenomena not possible in other materials form. Now Professor Xiaoxing Xi at Temple University from the US collaborates with researchers from the US, Italy and China showing a success in constructing oxides with well controlled stoichiometry and atomic layer precision. The central method—atomic layer-by-layer laser molecular beam epitaxy (ALL-Laser MBE)—is built upon the combined strengths of molecular beam epitaxy and pulsed laser deposition. It allows not only the growth of thin films of a Ruddlesden-Popper phase La5Ni4O13, but LaAlO3/SrTiO3 interfaces. Remarkably, no oxygen vacancies are detected in the oxide interfaces because of the high oxygen pressures during the growth and the carrier density of the two-dimensional electron gas agrees with the electronic reconstruction mechanism.Qingyu LeiMaryam GolalikhaniBruce A. DavidsonGuozhen LiuDarrell G. SchlomQiao QiaoYimei ZhuRavini U. ChandrasenaWeibing YangAlexander X. GrayElke ArenholzAndrew K. FarrarDmitri A. TenneMinhui HuJiandong GuoRakesh K. SinghXiaoxing XiNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Atomic physics. Constitution and properties of matterQC170-197ENnpj Quantum Materials, Vol 2, Iss 1, Pp 1-7 (2017)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Atomic physics. Constitution and properties of matter
QC170-197
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Atomic physics. Constitution and properties of matter
QC170-197
Qingyu Lei
Maryam Golalikhani
Bruce A. Davidson
Guozhen Liu
Darrell G. Schlom
Qiao Qiao
Yimei Zhu
Ravini U. Chandrasena
Weibing Yang
Alexander X. Gray
Elke Arenholz
Andrew K. Farrar
Dmitri A. Tenne
Minhui Hu
Jiandong Guo
Rakesh K. Singh
Xiaoxing Xi
Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy
description Applied physics: New technique for oxide interfaces Recent advances in synthesizing and engineering oxide interfaces and heterostructures have provided a powerful strategy for creating new artificial structures exhibiting phenomena not possible in other materials form. Now Professor Xiaoxing Xi at Temple University from the US collaborates with researchers from the US, Italy and China showing a success in constructing oxides with well controlled stoichiometry and atomic layer precision. The central method—atomic layer-by-layer laser molecular beam epitaxy (ALL-Laser MBE)—is built upon the combined strengths of molecular beam epitaxy and pulsed laser deposition. It allows not only the growth of thin films of a Ruddlesden-Popper phase La5Ni4O13, but LaAlO3/SrTiO3 interfaces. Remarkably, no oxygen vacancies are detected in the oxide interfaces because of the high oxygen pressures during the growth and the carrier density of the two-dimensional electron gas agrees with the electronic reconstruction mechanism.
format article
author Qingyu Lei
Maryam Golalikhani
Bruce A. Davidson
Guozhen Liu
Darrell G. Schlom
Qiao Qiao
Yimei Zhu
Ravini U. Chandrasena
Weibing Yang
Alexander X. Gray
Elke Arenholz
Andrew K. Farrar
Dmitri A. Tenne
Minhui Hu
Jiandong Guo
Rakesh K. Singh
Xiaoxing Xi
author_facet Qingyu Lei
Maryam Golalikhani
Bruce A. Davidson
Guozhen Liu
Darrell G. Schlom
Qiao Qiao
Yimei Zhu
Ravini U. Chandrasena
Weibing Yang
Alexander X. Gray
Elke Arenholz
Andrew K. Farrar
Dmitri A. Tenne
Minhui Hu
Jiandong Guo
Rakesh K. Singh
Xiaoxing Xi
author_sort Qingyu Lei
title Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy
title_short Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy
title_full Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy
title_fullStr Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy
title_full_unstemmed Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy
title_sort constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/2d8ef43026114075a8236793eab37b9a
work_keys_str_mv AT qingyulei constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy
AT maryamgolalikhani constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy
AT bruceadavidson constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy
AT guozhenliu constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy
AT darrellgschlom constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy
AT qiaoqiao constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy
AT yimeizhu constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy
AT raviniuchandrasena constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy
AT weibingyang constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy
AT alexanderxgray constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy
AT elkearenholz constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy
AT andrewkfarrar constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy
AT dmitriatenne constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy
AT minhuihu constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy
AT jiandongguo constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy
AT rakeshksingh constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy
AT xiaoxingxi constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy
_version_ 1718385137644732416