Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy
Applied physics: New technique for oxide interfaces Recent advances in synthesizing and engineering oxide interfaces and heterostructures have provided a powerful strategy for creating new artificial structures exhibiting phenomena not possible in other materials form. Now Professor Xiaoxing Xi at T...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2d8ef43026114075a8236793eab37b9a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2d8ef43026114075a8236793eab37b9a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2d8ef43026114075a8236793eab37b9a2021-12-02T16:05:45ZConstructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy10.1038/s41535-017-0015-x2397-4648https://doaj.org/article/2d8ef43026114075a8236793eab37b9a2017-02-01T00:00:00Zhttps://doi.org/10.1038/s41535-017-0015-xhttps://doaj.org/toc/2397-4648Applied physics: New technique for oxide interfaces Recent advances in synthesizing and engineering oxide interfaces and heterostructures have provided a powerful strategy for creating new artificial structures exhibiting phenomena not possible in other materials form. Now Professor Xiaoxing Xi at Temple University from the US collaborates with researchers from the US, Italy and China showing a success in constructing oxides with well controlled stoichiometry and atomic layer precision. The central method—atomic layer-by-layer laser molecular beam epitaxy (ALL-Laser MBE)—is built upon the combined strengths of molecular beam epitaxy and pulsed laser deposition. It allows not only the growth of thin films of a Ruddlesden-Popper phase La5Ni4O13, but LaAlO3/SrTiO3 interfaces. Remarkably, no oxygen vacancies are detected in the oxide interfaces because of the high oxygen pressures during the growth and the carrier density of the two-dimensional electron gas agrees with the electronic reconstruction mechanism.Qingyu LeiMaryam GolalikhaniBruce A. DavidsonGuozhen LiuDarrell G. SchlomQiao QiaoYimei ZhuRavini U. ChandrasenaWeibing YangAlexander X. GrayElke ArenholzAndrew K. FarrarDmitri A. TenneMinhui HuJiandong GuoRakesh K. SinghXiaoxing XiNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Atomic physics. Constitution and properties of matterQC170-197ENnpj Quantum Materials, Vol 2, Iss 1, Pp 1-7 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 Atomic physics. Constitution and properties of matter QC170-197 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Atomic physics. Constitution and properties of matter QC170-197 Qingyu Lei Maryam Golalikhani Bruce A. Davidson Guozhen Liu Darrell G. Schlom Qiao Qiao Yimei Zhu Ravini U. Chandrasena Weibing Yang Alexander X. Gray Elke Arenholz Andrew K. Farrar Dmitri A. Tenne Minhui Hu Jiandong Guo Rakesh K. Singh Xiaoxing Xi Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy |
description |
Applied physics: New technique for oxide interfaces Recent advances in synthesizing and engineering oxide interfaces and heterostructures have provided a powerful strategy for creating new artificial structures exhibiting phenomena not possible in other materials form. Now Professor Xiaoxing Xi at Temple University from the US collaborates with researchers from the US, Italy and China showing a success in constructing oxides with well controlled stoichiometry and atomic layer precision. The central method—atomic layer-by-layer laser molecular beam epitaxy (ALL-Laser MBE)—is built upon the combined strengths of molecular beam epitaxy and pulsed laser deposition. It allows not only the growth of thin films of a Ruddlesden-Popper phase La5Ni4O13, but LaAlO3/SrTiO3 interfaces. Remarkably, no oxygen vacancies are detected in the oxide interfaces because of the high oxygen pressures during the growth and the carrier density of the two-dimensional electron gas agrees with the electronic reconstruction mechanism. |
format |
article |
author |
Qingyu Lei Maryam Golalikhani Bruce A. Davidson Guozhen Liu Darrell G. Schlom Qiao Qiao Yimei Zhu Ravini U. Chandrasena Weibing Yang Alexander X. Gray Elke Arenholz Andrew K. Farrar Dmitri A. Tenne Minhui Hu Jiandong Guo Rakesh K. Singh Xiaoxing Xi |
author_facet |
Qingyu Lei Maryam Golalikhani Bruce A. Davidson Guozhen Liu Darrell G. Schlom Qiao Qiao Yimei Zhu Ravini U. Chandrasena Weibing Yang Alexander X. Gray Elke Arenholz Andrew K. Farrar Dmitri A. Tenne Minhui Hu Jiandong Guo Rakesh K. Singh Xiaoxing Xi |
author_sort |
Qingyu Lei |
title |
Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy |
title_short |
Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy |
title_full |
Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy |
title_fullStr |
Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy |
title_full_unstemmed |
Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy |
title_sort |
constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/2d8ef43026114075a8236793eab37b9a |
work_keys_str_mv |
AT qingyulei constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy AT maryamgolalikhani constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy AT bruceadavidson constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy AT guozhenliu constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy AT darrellgschlom constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy AT qiaoqiao constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy AT yimeizhu constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy AT raviniuchandrasena constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy AT weibingyang constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy AT alexanderxgray constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy AT elkearenholz constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy AT andrewkfarrar constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy AT dmitriatenne constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy AT minhuihu constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy AT jiandongguo constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy AT rakeshksingh constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy AT xiaoxingxi constructingoxideinterfacesandheterostructuresbyatomiclayerbylayerlasermolecularbeamepitaxy |
_version_ |
1718385137644732416 |