CYP2J2 and EETs protect against pulmonary arterial hypertension with lung ischemia–reperfusion injury in vivo and in vitro
Abstract Background Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acid to epoxyeicosatrienoic acids (EETs), which exert anti-inflammatory, anti-apoptotic, pro-proliferative, and antioxidant effects on the cardiovascular system. However, the role of CYP2J2 and EETs in pulmonary art...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2d97708cbc7f420e822375acdc920453 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2d97708cbc7f420e822375acdc920453 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2d97708cbc7f420e822375acdc9204532021-11-14T12:31:55ZCYP2J2 and EETs protect against pulmonary arterial hypertension with lung ischemia–reperfusion injury in vivo and in vitro10.1186/s12931-021-01891-w1465-993Xhttps://doaj.org/article/2d97708cbc7f420e822375acdc9204532021-11-01T00:00:00Zhttps://doi.org/10.1186/s12931-021-01891-whttps://doaj.org/toc/1465-993XAbstract Background Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acid to epoxyeicosatrienoic acids (EETs), which exert anti-inflammatory, anti-apoptotic, pro-proliferative, and antioxidant effects on the cardiovascular system. However, the role of CYP2J2 and EETs in pulmonary arterial hypertension (PAH) with lung ischemia–reperfusion injury (LIRI) remains unclear. In the present study, we investigated the effects of CYP2J2 overexpression and exogenous EETs on PAH with LIRI in vitro and in vivo. Methods CYP2J2 gene was transfected into rat lung tissue by recombinant adeno-associated virus (rAAV) to increase the levels of EETs in serum and lung tissue. A rat model of PAH with LIRI was constructed by intraperitoneal injection of monocrotaline (50 mg/kg) for 4 weeks, followed by clamping of the left pulmonary hilum for 1 h and reperfusion for 2 h. In addition, we established a cellular model of human pulmonary artery endothelial cells (HPAECs) with TNF-α combined with anoxia/reoxygenation (anoxia for 8 h and reoxygenation for 16 h) to determine the effect and mechanism of exogenous EETs. Results CYP2J2 overexpression significantly reduced the inflammatory response, oxidative stress and apoptosis associated with lung injury in PAH with LIRI. In addition, exogenous EETs suppressed inflammatory response and reduced intracellular reactive oxygen species (ROS) production and inhibited apoptosis in a tumor necrosis factor alpha (TNF-α) combined hypoxia-reoxygenation model of HPAECs. Our further studies revealed that the anti-inflammatory effects of CYP2J2 overexpression and EETs might be mediated by the activation of PPARγ; the anti-apoptotic effects might be mediated by the PI3K/AKT pathway. Conclusions CYP2J2 overexpression and EETs protect against PAH with LIRI via anti-inflammation, anti-oxidative stress and anti-apoptosis, suggesting that increased levels of EETs may be a promising strategy for the prevention and treatment of PAH with LIRI. Graphical AbstractYun DingPengjie TuYiyong ChenYangyun HuangXiaojie PanWenshu ChenBMCarticleCYP2J2EETsPulmonary arterial hypertensionLung ischemia–reperfusion injuryDiseases of the respiratory systemRC705-779ENRespiratory Research, Vol 22, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
CYP2J2 EETs Pulmonary arterial hypertension Lung ischemia–reperfusion injury Diseases of the respiratory system RC705-779 |
spellingShingle |
CYP2J2 EETs Pulmonary arterial hypertension Lung ischemia–reperfusion injury Diseases of the respiratory system RC705-779 Yun Ding Pengjie Tu Yiyong Chen Yangyun Huang Xiaojie Pan Wenshu Chen CYP2J2 and EETs protect against pulmonary arterial hypertension with lung ischemia–reperfusion injury in vivo and in vitro |
description |
Abstract Background Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acid to epoxyeicosatrienoic acids (EETs), which exert anti-inflammatory, anti-apoptotic, pro-proliferative, and antioxidant effects on the cardiovascular system. However, the role of CYP2J2 and EETs in pulmonary arterial hypertension (PAH) with lung ischemia–reperfusion injury (LIRI) remains unclear. In the present study, we investigated the effects of CYP2J2 overexpression and exogenous EETs on PAH with LIRI in vitro and in vivo. Methods CYP2J2 gene was transfected into rat lung tissue by recombinant adeno-associated virus (rAAV) to increase the levels of EETs in serum and lung tissue. A rat model of PAH with LIRI was constructed by intraperitoneal injection of monocrotaline (50 mg/kg) for 4 weeks, followed by clamping of the left pulmonary hilum for 1 h and reperfusion for 2 h. In addition, we established a cellular model of human pulmonary artery endothelial cells (HPAECs) with TNF-α combined with anoxia/reoxygenation (anoxia for 8 h and reoxygenation for 16 h) to determine the effect and mechanism of exogenous EETs. Results CYP2J2 overexpression significantly reduced the inflammatory response, oxidative stress and apoptosis associated with lung injury in PAH with LIRI. In addition, exogenous EETs suppressed inflammatory response and reduced intracellular reactive oxygen species (ROS) production and inhibited apoptosis in a tumor necrosis factor alpha (TNF-α) combined hypoxia-reoxygenation model of HPAECs. Our further studies revealed that the anti-inflammatory effects of CYP2J2 overexpression and EETs might be mediated by the activation of PPARγ; the anti-apoptotic effects might be mediated by the PI3K/AKT pathway. Conclusions CYP2J2 overexpression and EETs protect against PAH with LIRI via anti-inflammation, anti-oxidative stress and anti-apoptosis, suggesting that increased levels of EETs may be a promising strategy for the prevention and treatment of PAH with LIRI. Graphical Abstract |
format |
article |
author |
Yun Ding Pengjie Tu Yiyong Chen Yangyun Huang Xiaojie Pan Wenshu Chen |
author_facet |
Yun Ding Pengjie Tu Yiyong Chen Yangyun Huang Xiaojie Pan Wenshu Chen |
author_sort |
Yun Ding |
title |
CYP2J2 and EETs protect against pulmonary arterial hypertension with lung ischemia–reperfusion injury in vivo and in vitro |
title_short |
CYP2J2 and EETs protect against pulmonary arterial hypertension with lung ischemia–reperfusion injury in vivo and in vitro |
title_full |
CYP2J2 and EETs protect against pulmonary arterial hypertension with lung ischemia–reperfusion injury in vivo and in vitro |
title_fullStr |
CYP2J2 and EETs protect against pulmonary arterial hypertension with lung ischemia–reperfusion injury in vivo and in vitro |
title_full_unstemmed |
CYP2J2 and EETs protect against pulmonary arterial hypertension with lung ischemia–reperfusion injury in vivo and in vitro |
title_sort |
cyp2j2 and eets protect against pulmonary arterial hypertension with lung ischemia–reperfusion injury in vivo and in vitro |
publisher |
BMC |
publishDate |
2021 |
url |
https://doaj.org/article/2d97708cbc7f420e822375acdc920453 |
work_keys_str_mv |
AT yunding cyp2j2andeetsprotectagainstpulmonaryarterialhypertensionwithlungischemiareperfusioninjuryinvivoandinvitro AT pengjietu cyp2j2andeetsprotectagainstpulmonaryarterialhypertensionwithlungischemiareperfusioninjuryinvivoandinvitro AT yiyongchen cyp2j2andeetsprotectagainstpulmonaryarterialhypertensionwithlungischemiareperfusioninjuryinvivoandinvitro AT yangyunhuang cyp2j2andeetsprotectagainstpulmonaryarterialhypertensionwithlungischemiareperfusioninjuryinvivoandinvitro AT xiaojiepan cyp2j2andeetsprotectagainstpulmonaryarterialhypertensionwithlungischemiareperfusioninjuryinvivoandinvitro AT wenshuchen cyp2j2andeetsprotectagainstpulmonaryarterialhypertensionwithlungischemiareperfusioninjuryinvivoandinvitro |
_version_ |
1718429157170348032 |