Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy

Patients harboring mutations in the PI3K-AKT-MTOR pathway-encoding genes often develop a spectrum of neurodevelopmental disorders including epilepsy. A significant proportion remains unresponsive to conventional anti-seizure medications. Understanding mutation-specific pathophysiology is thus critic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Achira Roy, Victor Z. Han, Angela M. Bard, Devin T. Wehle, Stephen E. P. Smith, Jan-Marino Ramirez, Franck Kalume, Kathleen J. Millen
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/2d9e75212ff44739a7d5a2363a17616b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2d9e75212ff44739a7d5a2363a17616b
record_format dspace
spelling oai:doaj.org-article:2d9e75212ff44739a7d5a2363a17616b2021-12-01T08:00:53ZNon-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy1662-509910.3389/fnmol.2021.772847https://doaj.org/article/2d9e75212ff44739a7d5a2363a17616b2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fnmol.2021.772847/fullhttps://doaj.org/toc/1662-5099Patients harboring mutations in the PI3K-AKT-MTOR pathway-encoding genes often develop a spectrum of neurodevelopmental disorders including epilepsy. A significant proportion remains unresponsive to conventional anti-seizure medications. Understanding mutation-specific pathophysiology is thus critical for molecularly targeted therapies. We previously determined that mouse models expressing a patient-related activating mutation in PIK3CA, encoding the p110α catalytic subunit of phosphoinositide-3-kinase (PI3K), are epileptic and acutely treatable by PI3K inhibition, irrespective of dysmorphology. Here we report the physiological mechanisms underlying this dysregulated neuronal excitability. In vivo, we demonstrate epileptiform events in the Pik3ca mutant hippocampus. By ex vivo analyses, we show that Pik3ca-driven hyperactivation of hippocampal pyramidal neurons is mediated by changes in multiple non-synaptic, cell-intrinsic properties. Finally, we report that acute inhibition of PI3K or AKT, but not MTOR activity, suppresses the intrinsic hyperactivity of the mutant neurons. These acute mechanisms are distinct from those causing neuronal hyperactivity in other AKT-MTOR epileptic models and define parameters to facilitate the development of new molecularly rational therapeutic interventions for intractable epilepsy.Achira RoyVictor Z. HanVictor Z. HanAngela M. BardDevin T. WehleDevin T. WehleStephen E. P. SmithStephen E. P. SmithJan-Marino RamirezJan-Marino RamirezJan-Marino RamirezJan-Marino RamirezFranck KalumeFranck KalumeFranck KalumeKathleen J. MillenKathleen J. MillenFrontiers Media S.A.articlePI3Kepilepsymouse modelelectrophysiologyhippocampusBKM120 (buparlisib)Neurosciences. Biological psychiatry. NeuropsychiatryRC321-571ENFrontiers in Molecular Neuroscience, Vol 14 (2021)
institution DOAJ
collection DOAJ
language EN
topic PI3K
epilepsy
mouse model
electrophysiology
hippocampus
BKM120 (buparlisib)
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
spellingShingle PI3K
epilepsy
mouse model
electrophysiology
hippocampus
BKM120 (buparlisib)
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
Achira Roy
Victor Z. Han
Victor Z. Han
Angela M. Bard
Devin T. Wehle
Devin T. Wehle
Stephen E. P. Smith
Stephen E. P. Smith
Jan-Marino Ramirez
Jan-Marino Ramirez
Jan-Marino Ramirez
Jan-Marino Ramirez
Franck Kalume
Franck Kalume
Franck Kalume
Kathleen J. Millen
Kathleen J. Millen
Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy
description Patients harboring mutations in the PI3K-AKT-MTOR pathway-encoding genes often develop a spectrum of neurodevelopmental disorders including epilepsy. A significant proportion remains unresponsive to conventional anti-seizure medications. Understanding mutation-specific pathophysiology is thus critical for molecularly targeted therapies. We previously determined that mouse models expressing a patient-related activating mutation in PIK3CA, encoding the p110α catalytic subunit of phosphoinositide-3-kinase (PI3K), are epileptic and acutely treatable by PI3K inhibition, irrespective of dysmorphology. Here we report the physiological mechanisms underlying this dysregulated neuronal excitability. In vivo, we demonstrate epileptiform events in the Pik3ca mutant hippocampus. By ex vivo analyses, we show that Pik3ca-driven hyperactivation of hippocampal pyramidal neurons is mediated by changes in multiple non-synaptic, cell-intrinsic properties. Finally, we report that acute inhibition of PI3K or AKT, but not MTOR activity, suppresses the intrinsic hyperactivity of the mutant neurons. These acute mechanisms are distinct from those causing neuronal hyperactivity in other AKT-MTOR epileptic models and define parameters to facilitate the development of new molecularly rational therapeutic interventions for intractable epilepsy.
format article
author Achira Roy
Victor Z. Han
Victor Z. Han
Angela M. Bard
Devin T. Wehle
Devin T. Wehle
Stephen E. P. Smith
Stephen E. P. Smith
Jan-Marino Ramirez
Jan-Marino Ramirez
Jan-Marino Ramirez
Jan-Marino Ramirez
Franck Kalume
Franck Kalume
Franck Kalume
Kathleen J. Millen
Kathleen J. Millen
author_facet Achira Roy
Victor Z. Han
Victor Z. Han
Angela M. Bard
Devin T. Wehle
Devin T. Wehle
Stephen E. P. Smith
Stephen E. P. Smith
Jan-Marino Ramirez
Jan-Marino Ramirez
Jan-Marino Ramirez
Jan-Marino Ramirez
Franck Kalume
Franck Kalume
Franck Kalume
Kathleen J. Millen
Kathleen J. Millen
author_sort Achira Roy
title Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy
title_short Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy
title_full Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy
title_fullStr Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy
title_full_unstemmed Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy
title_sort non-synaptic cell-autonomous mechanisms underlie neuronal hyperactivity in a genetic model of pik3ca-driven intractable epilepsy
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/2d9e75212ff44739a7d5a2363a17616b
work_keys_str_mv AT achiraroy nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT victorzhan nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT victorzhan nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT angelambard nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT devintwehle nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT devintwehle nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT stephenepsmith nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT stephenepsmith nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT janmarinoramirez nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT janmarinoramirez nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT janmarinoramirez nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT janmarinoramirez nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT franckkalume nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT franckkalume nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT franckkalume nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT kathleenjmillen nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT kathleenjmillen nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
_version_ 1718405402699235328