Spatiotemporal prediction of COVID-19 cases using inter- and intra-county proxies of human interactions
Measurements of human interaction through proxies such as social connectedness or movement patterns have proved useful for predictive modeling of COVID-19. In this study, the authors develop a spatiotemporal machine learning model to predict county level new cases in the US using a variety of predic...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2daf6579f3da4705995a961cf61f12cf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Measurements of human interaction through proxies such as social connectedness or movement patterns have proved useful for predictive modeling of COVID-19. In this study, the authors develop a spatiotemporal machine learning model to predict county level new cases in the US using a variety of predictive features. |
---|