Spatiotemporal prediction of COVID-19 cases using inter- and intra-county proxies of human interactions
Measurements of human interaction through proxies such as social connectedness or movement patterns have proved useful for predictive modeling of COVID-19. In this study, the authors develop a spatiotemporal machine learning model to predict county level new cases in the US using a variety of predic...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2daf6579f3da4705995a961cf61f12cf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2daf6579f3da4705995a961cf61f12cf |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2daf6579f3da4705995a961cf61f12cf2021-11-14T12:36:07ZSpatiotemporal prediction of COVID-19 cases using inter- and intra-county proxies of human interactions10.1038/s41467-021-26742-62041-1723https://doaj.org/article/2daf6579f3da4705995a961cf61f12cf2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26742-6https://doaj.org/toc/2041-1723Measurements of human interaction through proxies such as social connectedness or movement patterns have proved useful for predictive modeling of COVID-19. In this study, the authors develop a spatiotemporal machine learning model to predict county level new cases in the US using a variety of predictive features.Behzad VahediMorteza KarimzadehHamidreza ZoragheinNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Behzad Vahedi Morteza Karimzadeh Hamidreza Zoraghein Spatiotemporal prediction of COVID-19 cases using inter- and intra-county proxies of human interactions |
description |
Measurements of human interaction through proxies such as social connectedness or movement patterns have proved useful for predictive modeling of COVID-19. In this study, the authors develop a spatiotemporal machine learning model to predict county level new cases in the US using a variety of predictive features. |
format |
article |
author |
Behzad Vahedi Morteza Karimzadeh Hamidreza Zoraghein |
author_facet |
Behzad Vahedi Morteza Karimzadeh Hamidreza Zoraghein |
author_sort |
Behzad Vahedi |
title |
Spatiotemporal prediction of COVID-19 cases using inter- and intra-county proxies of human interactions |
title_short |
Spatiotemporal prediction of COVID-19 cases using inter- and intra-county proxies of human interactions |
title_full |
Spatiotemporal prediction of COVID-19 cases using inter- and intra-county proxies of human interactions |
title_fullStr |
Spatiotemporal prediction of COVID-19 cases using inter- and intra-county proxies of human interactions |
title_full_unstemmed |
Spatiotemporal prediction of COVID-19 cases using inter- and intra-county proxies of human interactions |
title_sort |
spatiotemporal prediction of covid-19 cases using inter- and intra-county proxies of human interactions |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/2daf6579f3da4705995a961cf61f12cf |
work_keys_str_mv |
AT behzadvahedi spatiotemporalpredictionofcovid19casesusinginterandintracountyproxiesofhumaninteractions AT mortezakarimzadeh spatiotemporalpredictionofcovid19casesusinginterandintracountyproxiesofhumaninteractions AT hamidrezazoraghein spatiotemporalpredictionofcovid19casesusinginterandintracountyproxiesofhumaninteractions |
_version_ |
1718429097496936448 |