Spatiotemporal prediction of COVID-19 cases using inter- and intra-county proxies of human interactions
Measurements of human interaction through proxies such as social connectedness or movement patterns have proved useful for predictive modeling of COVID-19. In this study, the authors develop a spatiotemporal machine learning model to predict county level new cases in the US using a variety of predic...
Guardado en:
Autores principales: | Behzad Vahedi, Morteza Karimzadeh, Hamidreza Zoraghein |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2daf6579f3da4705995a961cf61f12cf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Real-time tracking and prediction of COVID-19 infection using digital proxies of population mobility and mixing
por: Kathy Leung, et al.
Publicado: (2021) -
COUnty aggRegation mixup AuGmEntation (COURAGE) COVID-19 prediction
por: Siawpeng Er, et al.
Publicado: (2021) -
Spatial Clustering of County-Level COVID-19 Rates in the U.S.
por: Marcus R. Andrews, et al.
Publicado: (2021) -
Estimating and explaining the spread of COVID-19 at the county level in the USA
por: Anthony R. Ives, et al.
Publicado: (2021) -
Influence of social determinants of health and county vaccination rates on machine learning models to predict COVID-19 case growth in Tennessee
por: Jamieson D Gray, et al.
Publicado: (2021)