A hybrid computational framework for intelligent inter-continent SARS-CoV-2 sub-strains characterization and prediction

Abstract Whereas accelerated attention beclouded early stages of the coronavirus spread, knowledge of actual pathogenicity and origin of possible sub-strains remained unclear. By harvesting the Global initiative on Sharing All Influenza Data (GISAID) database ( https://www.gisaid.org/ ), between Dec...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Moses Effiong Ekpenyong, Mercy Ernest Edoho, Udoinyang Godwin Inyang, Faith-Michael Uzoka, Itemobong Samuel Ekaidem, Anietie Effiong Moses, Martins Ochubiojo Emeje, Youtchou Mirabeau Tatfeng, Ifiok James Udo, EnoAbasi Deborah Anwana, Oboso Edem Etim, Joseph Ikim Geoffery, Emmanuel Ambrose Dan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2dbfd35eab264c17aa310891ba1970e6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2dbfd35eab264c17aa310891ba1970e6
record_format dspace
spelling oai:doaj.org-article:2dbfd35eab264c17aa310891ba1970e62021-12-02T18:30:45ZA hybrid computational framework for intelligent inter-continent SARS-CoV-2 sub-strains characterization and prediction10.1038/s41598-021-93757-w2045-2322https://doaj.org/article/2dbfd35eab264c17aa310891ba1970e62021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-93757-whttps://doaj.org/toc/2045-2322Abstract Whereas accelerated attention beclouded early stages of the coronavirus spread, knowledge of actual pathogenicity and origin of possible sub-strains remained unclear. By harvesting the Global initiative on Sharing All Influenza Data (GISAID) database ( https://www.gisaid.org/ ), between December 2019 and January 15, 2021, a total of 8864 human SARS-CoV-2 complete genome sequences processed by gender, across 6 continents (88 countries) of the world, Antarctica exempt, were analyzed. We hypothesized that data speak for itself and can discern true and explainable patterns of the disease. Identical genome diversity and pattern correlates analysis performed using a hybrid of biotechnology and machine learning methods corroborate the emergence of inter- and intra- SARS-CoV-2 sub-strains transmission and sustain an increase in sub-strains within the various continents, with nucleotide mutations dynamically varying between individuals in close association with the virus as it adapts to its host/environment. Interestingly, some viral sub-strain patterns progressively transformed into new sub-strain clusters indicating varying amino acid, and strong nucleotide association derived from same lineage. A novel cognitive approach to knowledge mining helped the discovery of transmission routes and seamless contact tracing protocol. Our classification results were better than state-of-the-art methods, indicating a more robust system for predicting emerging or new viral sub-strain(s). The results therefore offer explanations for the growing concerns about the virus and its next wave(s). A future direction of this work is a defuzzification of confusable pattern clusters for precise intra-country SARS-CoV-2 sub-strains analytics.Moses Effiong EkpenyongMercy Ernest EdohoUdoinyang Godwin InyangFaith-Michael UzokaItemobong Samuel EkaidemAnietie Effiong MosesMartins Ochubiojo EmejeYoutchou Mirabeau TatfengIfiok James UdoEnoAbasi Deborah AnwanaOboso Edem EtimJoseph Ikim GeofferyEmmanuel Ambrose DanNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-25 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Moses Effiong Ekpenyong
Mercy Ernest Edoho
Udoinyang Godwin Inyang
Faith-Michael Uzoka
Itemobong Samuel Ekaidem
Anietie Effiong Moses
Martins Ochubiojo Emeje
Youtchou Mirabeau Tatfeng
Ifiok James Udo
EnoAbasi Deborah Anwana
Oboso Edem Etim
Joseph Ikim Geoffery
Emmanuel Ambrose Dan
A hybrid computational framework for intelligent inter-continent SARS-CoV-2 sub-strains characterization and prediction
description Abstract Whereas accelerated attention beclouded early stages of the coronavirus spread, knowledge of actual pathogenicity and origin of possible sub-strains remained unclear. By harvesting the Global initiative on Sharing All Influenza Data (GISAID) database ( https://www.gisaid.org/ ), between December 2019 and January 15, 2021, a total of 8864 human SARS-CoV-2 complete genome sequences processed by gender, across 6 continents (88 countries) of the world, Antarctica exempt, were analyzed. We hypothesized that data speak for itself and can discern true and explainable patterns of the disease. Identical genome diversity and pattern correlates analysis performed using a hybrid of biotechnology and machine learning methods corroborate the emergence of inter- and intra- SARS-CoV-2 sub-strains transmission and sustain an increase in sub-strains within the various continents, with nucleotide mutations dynamically varying between individuals in close association with the virus as it adapts to its host/environment. Interestingly, some viral sub-strain patterns progressively transformed into new sub-strain clusters indicating varying amino acid, and strong nucleotide association derived from same lineage. A novel cognitive approach to knowledge mining helped the discovery of transmission routes and seamless contact tracing protocol. Our classification results were better than state-of-the-art methods, indicating a more robust system for predicting emerging or new viral sub-strain(s). The results therefore offer explanations for the growing concerns about the virus and its next wave(s). A future direction of this work is a defuzzification of confusable pattern clusters for precise intra-country SARS-CoV-2 sub-strains analytics.
format article
author Moses Effiong Ekpenyong
Mercy Ernest Edoho
Udoinyang Godwin Inyang
Faith-Michael Uzoka
Itemobong Samuel Ekaidem
Anietie Effiong Moses
Martins Ochubiojo Emeje
Youtchou Mirabeau Tatfeng
Ifiok James Udo
EnoAbasi Deborah Anwana
Oboso Edem Etim
Joseph Ikim Geoffery
Emmanuel Ambrose Dan
author_facet Moses Effiong Ekpenyong
Mercy Ernest Edoho
Udoinyang Godwin Inyang
Faith-Michael Uzoka
Itemobong Samuel Ekaidem
Anietie Effiong Moses
Martins Ochubiojo Emeje
Youtchou Mirabeau Tatfeng
Ifiok James Udo
EnoAbasi Deborah Anwana
Oboso Edem Etim
Joseph Ikim Geoffery
Emmanuel Ambrose Dan
author_sort Moses Effiong Ekpenyong
title A hybrid computational framework for intelligent inter-continent SARS-CoV-2 sub-strains characterization and prediction
title_short A hybrid computational framework for intelligent inter-continent SARS-CoV-2 sub-strains characterization and prediction
title_full A hybrid computational framework for intelligent inter-continent SARS-CoV-2 sub-strains characterization and prediction
title_fullStr A hybrid computational framework for intelligent inter-continent SARS-CoV-2 sub-strains characterization and prediction
title_full_unstemmed A hybrid computational framework for intelligent inter-continent SARS-CoV-2 sub-strains characterization and prediction
title_sort hybrid computational framework for intelligent inter-continent sars-cov-2 sub-strains characterization and prediction
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/2dbfd35eab264c17aa310891ba1970e6
work_keys_str_mv AT moseseffiongekpenyong ahybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT mercyernestedoho ahybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT udoinyanggodwininyang ahybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT faithmichaeluzoka ahybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT itemobongsamuelekaidem ahybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT anietieeffiongmoses ahybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT martinsochubiojoemeje ahybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT youtchoumirabeautatfeng ahybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT ifiokjamesudo ahybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT enoabasideborahanwana ahybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT obosoedemetim ahybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT josephikimgeoffery ahybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT emmanuelambrosedan ahybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT moseseffiongekpenyong hybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT mercyernestedoho hybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT udoinyanggodwininyang hybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT faithmichaeluzoka hybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT itemobongsamuelekaidem hybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT anietieeffiongmoses hybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT martinsochubiojoemeje hybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT youtchoumirabeautatfeng hybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT ifiokjamesudo hybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT enoabasideborahanwana hybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT obosoedemetim hybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT josephikimgeoffery hybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
AT emmanuelambrosedan hybridcomputationalframeworkforintelligentintercontinentsarscov2substrainscharacterizationandprediction
_version_ 1718377967080439808