Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm
Abstract Grasslands are an important component of terrestrial ecosystems that play a crucial role in the carbon cycle and climate change. In this study, we collected aboveground biomass (AGB) data from 223 grassland quadrats distributed across the Loess Plateau from 2011 to 2013 and predicted the sp...
Guardado en:
Autores principales: | Yinyin Wang, Gaolin Wu, Lei Deng, Zhuangsheng Tang, Kaibo Wang, Wenyi Sun, Zhouping Shangguan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2dd672d16bd04a47aba7689e977e614d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI
por: Shiliang Liu, et al.
Publicado: (2017) -
Diverse and divergent influences of phenology on herbaceous aboveground biomass across the Tibetan Plateau alpine grasslands
por: Peixian Li, et al.
Publicado: (2021) -
Spatial variation of stomatal morphological traits in grassland plants of the Loess Plateau
por: Jingguo Sun, et al.
Publicado: (2021) -
Intermediate coupling between aboveground and belowground biomass maximises the persistence of grasslands.
por: Simon Scheiter, et al.
Publicado: (2013) -
Remote sensing inversion of grassland aboveground biomass based on high accuracy surface modeling
por: Wei Zhou, et al.
Publicado: (2021)