Physics-Informed Neural Network for Unreacted-Core Shrinking Model of Coal Gasification
Physics-informed neural network (PINN) has achieved success in many science and engineering disciplines by encoding physical laws into the loss functions of the neural network. Compared with traditional numerical method, PINN transformed the problem of solving differential equations into the optimiz...
Guardado en:
Autores principales: | Ming Jian Li, Zengrong Su, Chang He, Bingjian Zhang, Qinglin Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIDIC Servizi S.r.l.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2dd7470c37d64f4389bfa627e61f6f2b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Effects of Gasification Temperature and Equivalence Ratio on Gasification Performance and Tar Generation of Air Fluidized Bed Gasification Using Raw and Torrefied Empty Fruit Bunch
por: Suriyati Saleh, et al.
Publicado: (2021) -
Modelling of Refuse-Derived Fuel Gasification Reactor
por: Márta Kákonyi, et al.
Publicado: (2021) -
Efficiency Improvement in Sugar Mills through Bagasse Gasification
por: Umang Kumar, et al.
Publicado: (2021) -
Hydrogen Production from Low-Grade Agricultural Waste: Integrated Drying, Gasification, and Chemical Looping
por: Kyohsuke Miyahira, et al.
Publicado: (2021) -
Synthesis of Pervious Geopolymer from Coal Fly Ash and Bagasse Fly Ash for Copper Removal
por: April Anne S. Tigue, et al.
Publicado: (2021)