RFaNet: Receptive Field-Aware Network with Finger Attention for Fingerspelling Recognition Using a Depth Sensor
Automatic fingerspelling recognition tackles the communication barrier between deaf and hearing individuals. However, the accuracy of fingerspelling recognition is reduced by high intra-class variability and low inter-class variability. In the existing methods, regular convolutional kernels, which h...
Guardado en:
Autores principales: | Shih-Hung Yang, Yao-Mao Cheng, Jyun-We Huang, Yon-Ping Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2dd77c35306a42a194de0a472a3a3452 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Zinc fingers: DNA binding and protein-protein interactions
por: LEON,OSCAR, et al.
Publicado: (2000) -
Reliability of anthropological measurements in determining vertical dimension of occlusion in Saudi population: A cross sectional study
por: Narendra Basutkar, et al.
Publicado: (2021) -
Use of silicone finger prostheses in amputee patients: An integrative review
por: François Isnaldo Dias Caldeira, et al.
Publicado: (2021) -
The Relationship of Finger Length Ratios (2D:4D) with Quantitative, Verbal Talent and Anthropometric Parameters
por: Balci,Raciha Sinem, et al.
Publicado: (2018) -
Sospecha de patologías sistémicas a través de alteraciones ungueales
por: Silva P,Paulina, et al.
Publicado: (2006)