Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys
Abstract This paper presents a bilinear log model, for predicting temperature-dependent ultimate strength of high-entropy alloys (HEAs) based on 21 HEA compositions. We consider the break temperature, T break, introduced in the model, an important parameter for design of materials with attractive hi...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2de5ba1c7efe4a79ba0485d7e4826393 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2de5ba1c7efe4a79ba0485d7e4826393 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2de5ba1c7efe4a79ba0485d7e48263932021-12-02T18:14:22ZPredicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys10.1038/s41524-021-00623-42057-3960https://doaj.org/article/2de5ba1c7efe4a79ba0485d7e48263932021-09-01T00:00:00Zhttps://doi.org/10.1038/s41524-021-00623-4https://doaj.org/toc/2057-3960Abstract This paper presents a bilinear log model, for predicting temperature-dependent ultimate strength of high-entropy alloys (HEAs) based on 21 HEA compositions. We consider the break temperature, T break, introduced in the model, an important parameter for design of materials with attractive high-temperature properties, one warranting inclusion in alloy specifications. For reliable operation, the operating temperature of alloys may need to stay below T break. We introduce a technique of global optimization, one enabling concurrent optimization of model parameters over low-temperature and high-temperature regimes. Furthermore, we suggest a general framework for joint optimization of alloy properties, capable of accounting for physics-based dependencies, and show how a special case can be formulated to address the identification of HEAs offering attractive ultimate strength. We advocate for the selection of an optimization technique suitable for the problem at hand and the data available, and for properly accounting for the underlying sources of variations.B. SteingrimssonX. FanX. YangM. C. GaoY. ZhangP. K. LiawNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 7, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 Computer software QA76.75-76.765 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Computer software QA76.75-76.765 B. Steingrimsson X. Fan X. Yang M. C. Gao Y. Zhang P. K. Liaw Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys |
description |
Abstract This paper presents a bilinear log model, for predicting temperature-dependent ultimate strength of high-entropy alloys (HEAs) based on 21 HEA compositions. We consider the break temperature, T break, introduced in the model, an important parameter for design of materials with attractive high-temperature properties, one warranting inclusion in alloy specifications. For reliable operation, the operating temperature of alloys may need to stay below T break. We introduce a technique of global optimization, one enabling concurrent optimization of model parameters over low-temperature and high-temperature regimes. Furthermore, we suggest a general framework for joint optimization of alloy properties, capable of accounting for physics-based dependencies, and show how a special case can be formulated to address the identification of HEAs offering attractive ultimate strength. We advocate for the selection of an optimization technique suitable for the problem at hand and the data available, and for properly accounting for the underlying sources of variations. |
format |
article |
author |
B. Steingrimsson X. Fan X. Yang M. C. Gao Y. Zhang P. K. Liaw |
author_facet |
B. Steingrimsson X. Fan X. Yang M. C. Gao Y. Zhang P. K. Liaw |
author_sort |
B. Steingrimsson |
title |
Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys |
title_short |
Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys |
title_full |
Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys |
title_fullStr |
Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys |
title_full_unstemmed |
Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys |
title_sort |
predicting temperature-dependent ultimate strengths of body-centered-cubic (bcc) high-entropy alloys |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/2de5ba1c7efe4a79ba0485d7e4826393 |
work_keys_str_mv |
AT bsteingrimsson predictingtemperaturedependentultimatestrengthsofbodycenteredcubicbcchighentropyalloys AT xfan predictingtemperaturedependentultimatestrengthsofbodycenteredcubicbcchighentropyalloys AT xyang predictingtemperaturedependentultimatestrengthsofbodycenteredcubicbcchighentropyalloys AT mcgao predictingtemperaturedependentultimatestrengthsofbodycenteredcubicbcchighentropyalloys AT yzhang predictingtemperaturedependentultimatestrengthsofbodycenteredcubicbcchighentropyalloys AT pkliaw predictingtemperaturedependentultimatestrengthsofbodycenteredcubicbcchighentropyalloys |
_version_ |
1718378384573071360 |