Intrinsic DMI-free skyrmion formation and robust dynamic behaviors in magnetic hemispherical shells

Abstract We performed finite-element micromagnetic simulations to examine the formation of skyrmions without intrinsic Dzyaloshinskii–Moriya interaction (DMI) in magnetic hemispherical shells. We found that curvature-induced DM-like interaction allows for further stabilization of skyrmions without t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jaehak Yang, Claas Abert, Dieter Suess, Sang-Koog Kim
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2df9ed02d27b407d93bde4c8686c1987
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract We performed finite-element micromagnetic simulations to examine the formation of skyrmions without intrinsic Dzyaloshinskii–Moriya interaction (DMI) in magnetic hemispherical shells. We found that curvature-induced DM-like interaction allows for further stabilization of skyrmions without the DMI in curved-geometry hemispherical shells for a specific range of uniaxial perpendicular magnetic anisotropy (PMA) constant K u . The larger the curvature of the shell, the higher the K u value required for the formation of the skyrmions. With well-stabilized skyrmions, we also found in-plane gyration modes and azimuthal spin-wave modes as well as an out-of-plane breathing mode, similarly to previously found modes for planar geometries. Furthermore, additional higher-frequency hybrid modes were observed due to coupling between the gyration and azimuthal modes. This work provides further physical insight into the static and dynamic properties of intrinsic DMI-free skyrmions formed in curved-geometry systems.