Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution

Martin Plencner,1,2 Eva Prosecká,1,2 Michala Rampichová,2,3 Barbora East,4 Matej Buzgo,2,3 Lucie Vysloužilová,3 Jiří Hoch,4 Evžen Amler1,2,5 1Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, Prague, 2Laboratory of Tissue En...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Plencner M, Prosecká E, Rampichová M, East B, Buzgo M, Vysloužilová L, Hoch J, Amler E
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2015
Materias:
Acceso en línea:https://doaj.org/article/2e0da3dc6a364cfcaba108ff845907fc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2e0da3dc6a364cfcaba108ff845907fc
record_format dspace
spelling oai:doaj.org-article:2e0da3dc6a364cfcaba108ff845907fc2021-12-02T01:21:30ZSignificant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution1178-2013https://doaj.org/article/2e0da3dc6a364cfcaba108ff845907fc2015-04-01T00:00:00Zhttp://www.dovepress.com/significant-improvement-of-biocompatibility-of-polypropylene-mesh-for--peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013 Martin Plencner,1,2 Eva Prosecká,1,2 Michala Rampichová,2,3 Barbora East,4 Matej Buzgo,2,3 Lucie Vysloužilová,3 Jiří Hoch,4 Evžen Amler1,2,5 1Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, Prague, 2Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, 3University Center for Energy Efficient Buildings (UCEEB), The Czech Technical University in Prague, Bustehrad, 4Department of Surgery, 2nd Faculty of Medicine, Charles University in Prague, Prague, 5Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic Abstract: Incisional hernia is the most common postoperative complication, affecting up to 20% of patients after abdominal surgery. Insertion of a synthetic surgical mesh has become the standard of care in ventral hernia repair. However, the implementation of a mesh does not reduce the risk of recurrence and the onset of hernia recurrence is only delayed by 2–3 years. Nowadays, more than 100 surgical meshes are available on the market, with polypropylene the most widely used for ventral hernia repair. Nonetheless, the ideal mesh does not exist yet; it still needs to be developed. Polycaprolactone nanofibers appear to be a suitable material for different kinds of cells, including fibroblasts, chondrocytes, and mesenchymal stem cells. The aim of the study reported here was to develop a functionalized scaffold for ventral hernia regeneration. We prepared a novel composite scaffold based on a polypropylene surgical mesh functionalized with poly-ε-caprolactone (PCL) nanofibers and adhered thrombocytes as a natural source of growth factors. In extensive in vitro tests, we proved the biocompatibility of PCL nanofibers with adhered thrombocytes deposited on a polypropylene mesh. Compared with polypropylene mesh alone, this composite scaffold provided better adhesion, growth, metabolic activity, proliferation, and viability of mouse fibroblasts in all tests and was even better than a polypropylene mesh functionalized with PCL nanofibers. The gradual release of growth factors from biocompatible nanofiber-modified scaffolds seems to be a promising approach in tissue engineering and regenerative medicine. Keywords: nanofibers, growth factors, polypropylene mesh, hernia regeneration, in vitroPlencner MProsecká ERampichová MEast BBuzgo MVysloužilová LHoch JAmler EDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2015, Iss default, Pp 2635-2646 (2015)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Plencner M
Prosecká E
Rampichová M
East B
Buzgo M
Vysloužilová L
Hoch J
Amler E
Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution
description Martin Plencner,1,2 Eva Prosecká,1,2 Michala Rampichová,2,3 Barbora East,4 Matej Buzgo,2,3 Lucie Vysloužilová,3 Jiří Hoch,4 Evžen Amler1,2,5 1Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, Prague, 2Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, 3University Center for Energy Efficient Buildings (UCEEB), The Czech Technical University in Prague, Bustehrad, 4Department of Surgery, 2nd Faculty of Medicine, Charles University in Prague, Prague, 5Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic Abstract: Incisional hernia is the most common postoperative complication, affecting up to 20% of patients after abdominal surgery. Insertion of a synthetic surgical mesh has become the standard of care in ventral hernia repair. However, the implementation of a mesh does not reduce the risk of recurrence and the onset of hernia recurrence is only delayed by 2–3 years. Nowadays, more than 100 surgical meshes are available on the market, with polypropylene the most widely used for ventral hernia repair. Nonetheless, the ideal mesh does not exist yet; it still needs to be developed. Polycaprolactone nanofibers appear to be a suitable material for different kinds of cells, including fibroblasts, chondrocytes, and mesenchymal stem cells. The aim of the study reported here was to develop a functionalized scaffold for ventral hernia regeneration. We prepared a novel composite scaffold based on a polypropylene surgical mesh functionalized with poly-ε-caprolactone (PCL) nanofibers and adhered thrombocytes as a natural source of growth factors. In extensive in vitro tests, we proved the biocompatibility of PCL nanofibers with adhered thrombocytes deposited on a polypropylene mesh. Compared with polypropylene mesh alone, this composite scaffold provided better adhesion, growth, metabolic activity, proliferation, and viability of mouse fibroblasts in all tests and was even better than a polypropylene mesh functionalized with PCL nanofibers. The gradual release of growth factors from biocompatible nanofiber-modified scaffolds seems to be a promising approach in tissue engineering and regenerative medicine. Keywords: nanofibers, growth factors, polypropylene mesh, hernia regeneration, in vitro
format article
author Plencner M
Prosecká E
Rampichová M
East B
Buzgo M
Vysloužilová L
Hoch J
Amler E
author_facet Plencner M
Prosecká E
Rampichová M
East B
Buzgo M
Vysloužilová L
Hoch J
Amler E
author_sort Plencner M
title Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution
title_short Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution
title_full Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution
title_fullStr Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution
title_full_unstemmed Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution
title_sort significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution
publisher Dove Medical Press
publishDate 2015
url https://doaj.org/article/2e0da3dc6a364cfcaba108ff845907fc
work_keys_str_mv AT plencnerm significantimprovementofbiocompatibilityofpolypropylenemeshforincisionalherniarepairbyusingpolyepsiloncaprolactonenanofibersfunctionalizedwiththrombocyterichsolution
AT proseckaacutee significantimprovementofbiocompatibilityofpolypropylenemeshforincisionalherniarepairbyusingpolyepsiloncaprolactonenanofibersfunctionalizedwiththrombocyterichsolution
AT rampichovaacutem significantimprovementofbiocompatibilityofpolypropylenemeshforincisionalherniarepairbyusingpolyepsiloncaprolactonenanofibersfunctionalizedwiththrombocyterichsolution
AT eastb significantimprovementofbiocompatibilityofpolypropylenemeshforincisionalherniarepairbyusingpolyepsiloncaprolactonenanofibersfunctionalizedwiththrombocyterichsolution
AT buzgom significantimprovementofbiocompatibilityofpolypropylenemeshforincisionalherniarepairbyusingpolyepsiloncaprolactonenanofibersfunctionalizedwiththrombocyterichsolution
AT vyslouzilovaacutel significantimprovementofbiocompatibilityofpolypropylenemeshforincisionalherniarepairbyusingpolyepsiloncaprolactonenanofibersfunctionalizedwiththrombocyterichsolution
AT hochj significantimprovementofbiocompatibilityofpolypropylenemeshforincisionalherniarepairbyusingpolyepsiloncaprolactonenanofibersfunctionalizedwiththrombocyterichsolution
AT amlere significantimprovementofbiocompatibilityofpolypropylenemeshforincisionalherniarepairbyusingpolyepsiloncaprolactonenanofibersfunctionalizedwiththrombocyterichsolution
_version_ 1718403130572406784