Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution
Martin Plencner,1,2 Eva Prosecká,1,2 Michala Rampichová,2,3 Barbora East,4 Matej Buzgo,2,3 Lucie Vysloužilová,3 Jiří Hoch,4 Evžen Amler1,2,5 1Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, Prague, 2Laboratory of Tissue En...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2015
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2e0da3dc6a364cfcaba108ff845907fc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2e0da3dc6a364cfcaba108ff845907fc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2e0da3dc6a364cfcaba108ff845907fc2021-12-02T01:21:30ZSignificant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution1178-2013https://doaj.org/article/2e0da3dc6a364cfcaba108ff845907fc2015-04-01T00:00:00Zhttp://www.dovepress.com/significant-improvement-of-biocompatibility-of-polypropylene-mesh-for--peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013 Martin Plencner,1,2 Eva Prosecká,1,2 Michala Rampichová,2,3 Barbora East,4 Matej Buzgo,2,3 Lucie Vysloužilová,3 Jiří Hoch,4 Evžen Amler1,2,5 1Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, Prague, 2Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, 3University Center for Energy Efficient Buildings (UCEEB), The Czech Technical University in Prague, Bustehrad, 4Department of Surgery, 2nd Faculty of Medicine, Charles University in Prague, Prague, 5Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic Abstract: Incisional hernia is the most common postoperative complication, affecting up to 20% of patients after abdominal surgery. Insertion of a synthetic surgical mesh has become the standard of care in ventral hernia repair. However, the implementation of a mesh does not reduce the risk of recurrence and the onset of hernia recurrence is only delayed by 2–3 years. Nowadays, more than 100 surgical meshes are available on the market, with polypropylene the most widely used for ventral hernia repair. Nonetheless, the ideal mesh does not exist yet; it still needs to be developed. Polycaprolactone nanofibers appear to be a suitable material for different kinds of cells, including fibroblasts, chondrocytes, and mesenchymal stem cells. The aim of the study reported here was to develop a functionalized scaffold for ventral hernia regeneration. We prepared a novel composite scaffold based on a polypropylene surgical mesh functionalized with poly-ε-caprolactone (PCL) nanofibers and adhered thrombocytes as a natural source of growth factors. In extensive in vitro tests, we proved the biocompatibility of PCL nanofibers with adhered thrombocytes deposited on a polypropylene mesh. Compared with polypropylene mesh alone, this composite scaffold provided better adhesion, growth, metabolic activity, proliferation, and viability of mouse fibroblasts in all tests and was even better than a polypropylene mesh functionalized with PCL nanofibers. The gradual release of growth factors from biocompatible nanofiber-modified scaffolds seems to be a promising approach in tissue engineering and regenerative medicine. Keywords: nanofibers, growth factors, polypropylene mesh, hernia regeneration, in vitroPlencner MProsecká ERampichová MEast BBuzgo MVysloužilová LHoch JAmler EDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2015, Iss default, Pp 2635-2646 (2015) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Plencner M Prosecká E Rampichová M East B Buzgo M Vysloužilová L Hoch J Amler E Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution |
description |
Martin Plencner,1,2 Eva Prosecká,1,2 Michala Rampichová,2,3 Barbora East,4 Matej Buzgo,2,3 Lucie Vysloužilová,3 Jiří Hoch,4 Evžen Amler1,2,5 1Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, Prague, 2Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, 3University Center for Energy Efficient Buildings (UCEEB), The Czech Technical University in Prague, Bustehrad, 4Department of Surgery, 2nd Faculty of Medicine, Charles University in Prague, Prague, 5Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic Abstract: Incisional hernia is the most common postoperative complication, affecting up to 20% of patients after abdominal surgery. Insertion of a synthetic surgical mesh has become the standard of care in ventral hernia repair. However, the implementation of a mesh does not reduce the risk of recurrence and the onset of hernia recurrence is only delayed by 2–3 years. Nowadays, more than 100 surgical meshes are available on the market, with polypropylene the most widely used for ventral hernia repair. Nonetheless, the ideal mesh does not exist yet; it still needs to be developed. Polycaprolactone nanofibers appear to be a suitable material for different kinds of cells, including fibroblasts, chondrocytes, and mesenchymal stem cells. The aim of the study reported here was to develop a functionalized scaffold for ventral hernia regeneration. We prepared a novel composite scaffold based on a polypropylene surgical mesh functionalized with poly-ε-caprolactone (PCL) nanofibers and adhered thrombocytes as a natural source of growth factors. In extensive in vitro tests, we proved the biocompatibility of PCL nanofibers with adhered thrombocytes deposited on a polypropylene mesh. Compared with polypropylene mesh alone, this composite scaffold provided better adhesion, growth, metabolic activity, proliferation, and viability of mouse fibroblasts in all tests and was even better than a polypropylene mesh functionalized with PCL nanofibers. The gradual release of growth factors from biocompatible nanofiber-modified scaffolds seems to be a promising approach in tissue engineering and regenerative medicine. Keywords: nanofibers, growth factors, polypropylene mesh, hernia regeneration, in vitro |
format |
article |
author |
Plencner M Prosecká E Rampichová M East B Buzgo M Vysloužilová L Hoch J Amler E |
author_facet |
Plencner M Prosecká E Rampichová M East B Buzgo M Vysloužilová L Hoch J Amler E |
author_sort |
Plencner M |
title |
Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution |
title_short |
Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution |
title_full |
Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution |
title_fullStr |
Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution |
title_full_unstemmed |
Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution |
title_sort |
significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution |
publisher |
Dove Medical Press |
publishDate |
2015 |
url |
https://doaj.org/article/2e0da3dc6a364cfcaba108ff845907fc |
work_keys_str_mv |
AT plencnerm significantimprovementofbiocompatibilityofpolypropylenemeshforincisionalherniarepairbyusingpolyepsiloncaprolactonenanofibersfunctionalizedwiththrombocyterichsolution AT proseckaacutee significantimprovementofbiocompatibilityofpolypropylenemeshforincisionalherniarepairbyusingpolyepsiloncaprolactonenanofibersfunctionalizedwiththrombocyterichsolution AT rampichovaacutem significantimprovementofbiocompatibilityofpolypropylenemeshforincisionalherniarepairbyusingpolyepsiloncaprolactonenanofibersfunctionalizedwiththrombocyterichsolution AT eastb significantimprovementofbiocompatibilityofpolypropylenemeshforincisionalherniarepairbyusingpolyepsiloncaprolactonenanofibersfunctionalizedwiththrombocyterichsolution AT buzgom significantimprovementofbiocompatibilityofpolypropylenemeshforincisionalherniarepairbyusingpolyepsiloncaprolactonenanofibersfunctionalizedwiththrombocyterichsolution AT vyslouzilovaacutel significantimprovementofbiocompatibilityofpolypropylenemeshforincisionalherniarepairbyusingpolyepsiloncaprolactonenanofibersfunctionalizedwiththrombocyterichsolution AT hochj significantimprovementofbiocompatibilityofpolypropylenemeshforincisionalherniarepairbyusingpolyepsiloncaprolactonenanofibersfunctionalizedwiththrombocyterichsolution AT amlere significantimprovementofbiocompatibilityofpolypropylenemeshforincisionalherniarepairbyusingpolyepsiloncaprolactonenanofibersfunctionalizedwiththrombocyterichsolution |
_version_ |
1718403130572406784 |