Decreased Porphyromonas gingivalis adhesion and improved biocompatibility on tetracycline-loaded TiO2 nanotubes: an in vitro study
Lei Sun,1 Jiliang Xu,1 Zihuan Sun,1 Fang Zheng,2 Chun Liu,1 Chao Wang,1 Xiaoye Hu,3 Lunguo Xia,4 Zhou Liu,5 Rong Xia1 1Department of Stomatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China; 2Department of Mathematics, University of...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2e1dee76d1564307a8315c8e88d38755 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2e1dee76d1564307a8315c8e88d38755 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2e1dee76d1564307a8315c8e88d387552021-12-02T06:14:11ZDecreased Porphyromonas gingivalis adhesion and improved biocompatibility on tetracycline-loaded TiO2 nanotubes: an in vitro study1178-2013https://doaj.org/article/2e1dee76d1564307a8315c8e88d387552018-10-01T00:00:00Zhttps://www.dovepress.com/decreased-porphyromonas-gingivalis-adhesion-and-improved-biocompatibil-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Lei Sun,1 Jiliang Xu,1 Zihuan Sun,1 Fang Zheng,2 Chun Liu,1 Chao Wang,1 Xiaoye Hu,3 Lunguo Xia,4 Zhou Liu,5 Rong Xia1 1Department of Stomatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China; 2Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China; 3Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, People’s Republic of China; 4Department of Orthodontics, Collage of Stomatology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 5Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China Background: Titanium dioxide (TiO2) nanotubes are often used as carriers for loading materials such as drugs, proteins, and growth factors. Materials and methods: In this study, we loaded tetracycline onto TiO2 nanotubes to demonstrate its antibacterial properties and biocompatibility. The two-layered anodic TiO2 nanotubes with a honeycomb-like porous structure were fabricated by using a two-step anodization, and they were loaded with tetracycline by using a simplified lyophilization method and vacuum drying. Their physical properties, such as chemical compositions, wettability, and surface morphologies of the different samples, were observed and measured by X-ray photoelectron spectroscopy (XPS), contact angle measurement, and scanning electron microscopy (SEM). The in vitro growth behaviors of mouse bone marrow stromal cells (BMSCs) on these substrates were investigated. Results: The TiO2 nanotube (NT) substrates and the tetracycline-loaded TiO2 nanotube (NT-T) substrates revealed a crucial potential for promoting the adhesion, proliferation, and differentiation of BMSCs. Similarly, the NT-T substrates displayed a sudden release of tetracycline in the first 15 minutes of their administration, and the release tended to be stable 90 minutes later. The antibacterial performances of the prepared substrates were assessed with Porphyromonas gingivalis. The result showed that NT and NT-T substrates had antibacterial capacities. Conclusion: Overall, this research provides a promising method with potential for clinical translation by allowing local slow release of antimicrobial compounds by loading them onto constructed nanotubes. Keywords: Porphyromonas gingivalis, tetracycline, TiO2 nanotubes, mouse bone marrow stromal cells, antibacterial, drug releaseSun LXu JSun ZZheng FLiu CWang CXiaoye HuXia LLiu ZXia RDove Medical Pressarticleporphyromonas gingivalistetracyclineTiO2 nanotubesmouse bone marrow stromal cellsantibacterialdrug releaseMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 13, Pp 6769-6777 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
porphyromonas gingivalis tetracycline TiO2 nanotubes mouse bone marrow stromal cells antibacterial drug release Medicine (General) R5-920 |
spellingShingle |
porphyromonas gingivalis tetracycline TiO2 nanotubes mouse bone marrow stromal cells antibacterial drug release Medicine (General) R5-920 Sun L Xu J Sun Z Zheng F Liu C Wang C Xiaoye Hu Xia L Liu Z Xia R Decreased Porphyromonas gingivalis adhesion and improved biocompatibility on tetracycline-loaded TiO2 nanotubes: an in vitro study |
description |
Lei Sun,1 Jiliang Xu,1 Zihuan Sun,1 Fang Zheng,2 Chun Liu,1 Chao Wang,1 Xiaoye Hu,3 Lunguo Xia,4 Zhou Liu,5 Rong Xia1 1Department of Stomatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China; 2Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China; 3Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, People’s Republic of China; 4Department of Orthodontics, Collage of Stomatology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 5Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China Background: Titanium dioxide (TiO2) nanotubes are often used as carriers for loading materials such as drugs, proteins, and growth factors. Materials and methods: In this study, we loaded tetracycline onto TiO2 nanotubes to demonstrate its antibacterial properties and biocompatibility. The two-layered anodic TiO2 nanotubes with a honeycomb-like porous structure were fabricated by using a two-step anodization, and they were loaded with tetracycline by using a simplified lyophilization method and vacuum drying. Their physical properties, such as chemical compositions, wettability, and surface morphologies of the different samples, were observed and measured by X-ray photoelectron spectroscopy (XPS), contact angle measurement, and scanning electron microscopy (SEM). The in vitro growth behaviors of mouse bone marrow stromal cells (BMSCs) on these substrates were investigated. Results: The TiO2 nanotube (NT) substrates and the tetracycline-loaded TiO2 nanotube (NT-T) substrates revealed a crucial potential for promoting the adhesion, proliferation, and differentiation of BMSCs. Similarly, the NT-T substrates displayed a sudden release of tetracycline in the first 15 minutes of their administration, and the release tended to be stable 90 minutes later. The antibacterial performances of the prepared substrates were assessed with Porphyromonas gingivalis. The result showed that NT and NT-T substrates had antibacterial capacities. Conclusion: Overall, this research provides a promising method with potential for clinical translation by allowing local slow release of antimicrobial compounds by loading them onto constructed nanotubes. Keywords: Porphyromonas gingivalis, tetracycline, TiO2 nanotubes, mouse bone marrow stromal cells, antibacterial, drug release |
format |
article |
author |
Sun L Xu J Sun Z Zheng F Liu C Wang C Xiaoye Hu Xia L Liu Z Xia R |
author_facet |
Sun L Xu J Sun Z Zheng F Liu C Wang C Xiaoye Hu Xia L Liu Z Xia R |
author_sort |
Sun L |
title |
Decreased Porphyromonas gingivalis adhesion and improved biocompatibility on tetracycline-loaded TiO2 nanotubes: an in vitro study |
title_short |
Decreased Porphyromonas gingivalis adhesion and improved biocompatibility on tetracycline-loaded TiO2 nanotubes: an in vitro study |
title_full |
Decreased Porphyromonas gingivalis adhesion and improved biocompatibility on tetracycline-loaded TiO2 nanotubes: an in vitro study |
title_fullStr |
Decreased Porphyromonas gingivalis adhesion and improved biocompatibility on tetracycline-loaded TiO2 nanotubes: an in vitro study |
title_full_unstemmed |
Decreased Porphyromonas gingivalis adhesion and improved biocompatibility on tetracycline-loaded TiO2 nanotubes: an in vitro study |
title_sort |
decreased porphyromonas gingivalis adhesion and improved biocompatibility on tetracycline-loaded tio2 nanotubes: an in vitro study |
publisher |
Dove Medical Press |
publishDate |
2018 |
url |
https://doaj.org/article/2e1dee76d1564307a8315c8e88d38755 |
work_keys_str_mv |
AT sunl decreasedporphyromonasgingivalisadhesionandimprovedbiocompatibilityontetracyclineloadedtio2nbspnanotubesaninvitrostudy AT xuj decreasedporphyromonasgingivalisadhesionandimprovedbiocompatibilityontetracyclineloadedtio2nbspnanotubesaninvitrostudy AT sunz decreasedporphyromonasgingivalisadhesionandimprovedbiocompatibilityontetracyclineloadedtio2nbspnanotubesaninvitrostudy AT zhengf decreasedporphyromonasgingivalisadhesionandimprovedbiocompatibilityontetracyclineloadedtio2nbspnanotubesaninvitrostudy AT liuc decreasedporphyromonasgingivalisadhesionandimprovedbiocompatibilityontetracyclineloadedtio2nbspnanotubesaninvitrostudy AT wangc decreasedporphyromonasgingivalisadhesionandimprovedbiocompatibilityontetracyclineloadedtio2nbspnanotubesaninvitrostudy AT xiaoyehu decreasedporphyromonasgingivalisadhesionandimprovedbiocompatibilityontetracyclineloadedtio2nbspnanotubesaninvitrostudy AT xial decreasedporphyromonasgingivalisadhesionandimprovedbiocompatibilityontetracyclineloadedtio2nbspnanotubesaninvitrostudy AT liuz decreasedporphyromonasgingivalisadhesionandimprovedbiocompatibilityontetracyclineloadedtio2nbspnanotubesaninvitrostudy AT xiar decreasedporphyromonasgingivalisadhesionandimprovedbiocompatibilityontetracyclineloadedtio2nbspnanotubesaninvitrostudy |
_version_ |
1718399981802487808 |