A new approach to precise mapping of local temperature fields in submicrometer aqueous volumes

Abstract Nanodiamonds hosting temperature-sensing centers constitute a closed thermodynamic system. Such a system prevents direct contact of the temperature sensors with the environment making it an ideal environmental insensitive nanosized thermometer. A new design of a nanodiamond thermometer, bas...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alexey M. Romshin, Vadim Zeeb, Artem K. Martyanov, Oleg S. Kudryavtsev, Dmitrii G. Pasternak, Vadim S. Sedov, Victor G. Ralchenko, Andrey G. Sinogeykin, Igor I. Vlasov
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2e22dd7acb2a41c6a7f36946f05699bb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Nanodiamonds hosting temperature-sensing centers constitute a closed thermodynamic system. Such a system prevents direct contact of the temperature sensors with the environment making it an ideal environmental insensitive nanosized thermometer. A new design of a nanodiamond thermometer, based on a 500-nm luminescent nanodiamond embedded into the inner channel of a glass submicron pipette is reported. All-optical detection of temperature, based on spectral changes of the emission of “silicon-vacancy” centers with temperature, is used. We demonstrate the applicability of the thermometric tool to the study of temperature distribution near a local heater, placed in an aqueous medium. The calculated and experimental values of temperatures are shown to coincide within measurement error at gradients up to 20 °C/μm. Until now, temperature measurements on the submicron scale at such high gradients have not been performed. The new thermometric tool opens up unique opportunities to answer the urgent paradigm-shifting questions of cell physiology thermodynamics.