A data-driven approach for constructing mutation categories for mutational signature analysis.
Mutational processes shape the genomes of cancer patients and their understanding has important applications in diagnosis and treatment. Current modeling of mutational processes by identifying their characteristic signatures views each base substitution in a limited context of a single flanking base...
Guardado en:
Autores principales: | Gal Gilad, Mark D M Leiserson, Roded Sharan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2e2db682464b4c72ad2e2f5eb12868df |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A mixture model for signature discovery from sparse mutation data
por: Itay Sason, et al.
Publicado: (2021) -
Simultaneous identification of multiple driver pathways in cancer.
por: Mark D M Leiserson, et al.
Publicado: (2013) -
mmsig: a fitting approach to accurately identify somatic mutational signatures in hematological malignancies
por: Even H. Rustad, et al.
Publicado: (2021) -
De novo mutational signature discovery in tumor genomes using SparseSignatures.
por: Avantika Lal, et al.
Publicado: (2021) -
A differential wiring analysis of expression data correctly identifies the gene containing the causal mutation.
por: Nicholas J Hudson, et al.
Publicado: (2009)