Exact solutions, Lagrangians and first integrals for generalized Camassa–Holm equation
In this paper, Lagrangians and the first integrals of a new class of Liénard-type equations have been investigated. This class can be obtained using the traveling wave reduction of the generalized Camassa–Holm equation. This task is achieved using the direct definitions of the Lagrangians and first...
Guardado en:
Autores principales: | H. Elzehri, A.H. Abdel Kader, M.S. Abdel Latif |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2e405306e1e34b20a79338f01ed079e6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On the solutions and conservation laws of the 2D breaking soliton equation of fluid mechanics
por: Karabo Plaatjie, et al.
Publicado: (2021) -
Editorial Board
Publicado: (2021) -
Abundant analytical closed-form solutions and various solitonic wave forms to the ZK-BBM and GZK-BBM equations in fluids and plasma physics
por: Sachin Kumar, et al.
Publicado: (2021) -
Bounded in the mean solutions of a second-order difference equation
por: Mykhailo Horodnii, et al.
Publicado: (2021) -
Lagrangian decompositions for the two-level FTTx network design problem
por: Andreas Bley, et al.
Publicado: (2013)