Duality theorems for nondifferentiable semi-infinite interval-valued optimization problems with vanishing constraints
Abstract In this paper, we study the duality theorems of a nondifferentiable semi-infinite interval-valued optimization problem with vanishing constraints (IOPVC). By constructing the Wolfe and Mond–Weir type dual models, we give the weak duality, strong duality, converse duality, restricted convers...
Guardado en:
Autores principales: | Haijun Wang, Huihui Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2e58b70ecc214cc59ff592b69ee510b7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Karush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming with equilibrium constraints
por: Le Thanh Tung
Publicado: (2021) -
Optimality conditions and duality for multiobjective semi-infinite programming with data uncertainty via Mordukhovich subdifferential
por: Pham Thanh-Hung
Publicado: (2021) -
Hardy-Type Spaces and its Dual
por: Castillo,René Erlín, et al.
Publicado: (2014) -
Nonlinear elliptic equations in dimension two with potentials which can vanish at infinity
por: Santaria Leuyacc,Yony Raúl
Publicado: (2019) -
Analysis of Gradient Vanishing of RNNs and Performance Comparison
por: Seol-Hyun Noh
Publicado: (2021)