Temporal-Spatial Soil Moisture Estimation from CYGNSS Using Machine Learning Regression With a Preclassification Approach
Global navigation satellite system-reflectometry (GNSS-R) can retrieve Earth's surface parameters, such as soil moisture (SM) using the reflected signals from GNSS constellations with advantages of noncontact, all-weather, real-time, and continuity, particularly the space-borne cyclone GN...
Guardado en:
Autores principales: | Yan Jia, Shuanggen Jin, Haolin Chen, Qingyun Yan, Patrizia Savi, Yan Jin, Yuan Yuan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2e642fcfcf954df1b4ebd31b03e81dcd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Improved CYGNSS Wind Speed Retrieval Using Significant Wave Height Correction
por: Daniel Pascual, et al.
Publicado: (2021) -
Daily Flood Monitoring Based on Spaceborne GNSS-R Data: A Case Study on Henan, China
por: Wentao Yang, et al.
Publicado: (2021) -
Validation of SMOS, SMAP, and ESA CCI Soil Moisture Over a Humid Region
por: Xiaoyong Xu, et al.
Publicado: (2021) -
Wind Direction Retrieval Using Support Vector Machine from CYGNSS Sea Surface Data
por: Yun Zhang, et al.
Publicado: (2021) -
Error Propagation in Microwave Soil Moisture and Vegetation Optical Depth Retrievals
por: Andrew Feldman, et al.
Publicado: (2021)