Nondestructive Testing of Mechanical Properties of Bamboo–Wood Composite Container Floor by Image Processing
The bamboo–wood composite container floor (BWCCF) has been wildly utilized in transportation in recent years. However, most of the common approaches of mechanics detection are conducted in a time-consuming and resource wasting way. Therefore, this paper aims to provide a frugal and highly efficient...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2e6eb217b76745c9b2a280eb3b0f82d9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2e6eb217b76745c9b2a280eb3b0f82d9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2e6eb217b76745c9b2a280eb3b0f82d92021-11-25T17:38:22ZNondestructive Testing of Mechanical Properties of Bamboo–Wood Composite Container Floor by Image Processing10.3390/f121115351999-4907https://doaj.org/article/2e6eb217b76745c9b2a280eb3b0f82d92021-11-01T00:00:00Zhttps://www.mdpi.com/1999-4907/12/11/1535https://doaj.org/toc/1999-4907The bamboo–wood composite container floor (BWCCF) has been wildly utilized in transportation in recent years. However, most of the common approaches of mechanics detection are conducted in a time-consuming and resource wasting way. Therefore, this paper aims to provide a frugal and highly efficient method to predict the short-span shear stress, the modulus of rupture (MOR) and the modulus of elasticity (MOE) of the BWCCF. Artificial neural network (ANN) models were developed and support vector machine (SVM) models were constructed for comparative study by taking the characteristic parameters of image processing as input and the mechanical properties as output. The results show that the SVM models can output better values than the ANN models. In a prediction of the three mechanical properties by SVMs, the correlation coefficients (R) were determined as 0.899, 0.926, and 0.949, and the mean absolute percentage errors (MAPE) were obtained, 6.983%, 5.873%, and 4.474%, respectively. The performance measures show the strong generalization of the SVM models. The discoveries in this work provide new perspectives on the study of mechanical properties of the BWCCF combining machine learning and image processing.Zhilin JiangYi LiangZihua SuAonan ChenJianping SunMDPI AGarticlebamboo–wood composite container floormechanical propertyimage processingartificial neural networksupport vector machinePlant ecologyQK900-989ENForests, Vol 12, Iss 1535, p 1535 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
bamboo–wood composite container floor mechanical property image processing artificial neural network support vector machine Plant ecology QK900-989 |
spellingShingle |
bamboo–wood composite container floor mechanical property image processing artificial neural network support vector machine Plant ecology QK900-989 Zhilin Jiang Yi Liang Zihua Su Aonan Chen Jianping Sun Nondestructive Testing of Mechanical Properties of Bamboo–Wood Composite Container Floor by Image Processing |
description |
The bamboo–wood composite container floor (BWCCF) has been wildly utilized in transportation in recent years. However, most of the common approaches of mechanics detection are conducted in a time-consuming and resource wasting way. Therefore, this paper aims to provide a frugal and highly efficient method to predict the short-span shear stress, the modulus of rupture (MOR) and the modulus of elasticity (MOE) of the BWCCF. Artificial neural network (ANN) models were developed and support vector machine (SVM) models were constructed for comparative study by taking the characteristic parameters of image processing as input and the mechanical properties as output. The results show that the SVM models can output better values than the ANN models. In a prediction of the three mechanical properties by SVMs, the correlation coefficients (R) were determined as 0.899, 0.926, and 0.949, and the mean absolute percentage errors (MAPE) were obtained, 6.983%, 5.873%, and 4.474%, respectively. The performance measures show the strong generalization of the SVM models. The discoveries in this work provide new perspectives on the study of mechanical properties of the BWCCF combining machine learning and image processing. |
format |
article |
author |
Zhilin Jiang Yi Liang Zihua Su Aonan Chen Jianping Sun |
author_facet |
Zhilin Jiang Yi Liang Zihua Su Aonan Chen Jianping Sun |
author_sort |
Zhilin Jiang |
title |
Nondestructive Testing of Mechanical Properties of Bamboo–Wood Composite Container Floor by Image Processing |
title_short |
Nondestructive Testing of Mechanical Properties of Bamboo–Wood Composite Container Floor by Image Processing |
title_full |
Nondestructive Testing of Mechanical Properties of Bamboo–Wood Composite Container Floor by Image Processing |
title_fullStr |
Nondestructive Testing of Mechanical Properties of Bamboo–Wood Composite Container Floor by Image Processing |
title_full_unstemmed |
Nondestructive Testing of Mechanical Properties of Bamboo–Wood Composite Container Floor by Image Processing |
title_sort |
nondestructive testing of mechanical properties of bamboo–wood composite container floor by image processing |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/2e6eb217b76745c9b2a280eb3b0f82d9 |
work_keys_str_mv |
AT zhilinjiang nondestructivetestingofmechanicalpropertiesofbamboowoodcompositecontainerfloorbyimageprocessing AT yiliang nondestructivetestingofmechanicalpropertiesofbamboowoodcompositecontainerfloorbyimageprocessing AT zihuasu nondestructivetestingofmechanicalpropertiesofbamboowoodcompositecontainerfloorbyimageprocessing AT aonanchen nondestructivetestingofmechanicalpropertiesofbamboowoodcompositecontainerfloorbyimageprocessing AT jianpingsun nondestructivetestingofmechanicalpropertiesofbamboowoodcompositecontainerfloorbyimageprocessing |
_version_ |
1718412156689448960 |