Using the fast fourier transform to accelerate the computational search for RNA conformational switches.

Using complex roots of unity and the Fast Fourier Transform, we design a new thermodynamics-based algorithm, FFTbor, that computes the Boltzmann probability that secondary structures differ by [Formula: see text] base pairs from an arbitrary initial structure of a given RNA sequence. The algorithm,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Evan Senter, Saad Sheikh, Ivan Dotu, Yann Ponty, Peter Clote
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2e7cf30e770a41ba88b630c8ce791991
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Using complex roots of unity and the Fast Fourier Transform, we design a new thermodynamics-based algorithm, FFTbor, that computes the Boltzmann probability that secondary structures differ by [Formula: see text] base pairs from an arbitrary initial structure of a given RNA sequence. The algorithm, which runs in quartic time O(n(4)) and quadratic space O(n(2)), is used to determine the correlation between kinetic folding speed and the ruggedness of the energy landscape, and to predict the location of riboswitch expression platform candidates. A web server is available at http://bioinformatics.bc.edu/clotelab/FFTbor/.