Stability of MRI radiomic features according to various imaging parameters in fast scanned T2-FLAIR for acute ischemic stroke patients
Abstract From May 2015 to June 2016, data on 296 patients undergoing 1.5-Tesla MRI for symptoms of acute ischemic stroke were retrospectively collected. Conventional, echo-planar imaging (EPI) and echo train length (ETL)-T2-FLAIR were simultaneously obtained in 118 patients (first group), and conven...
Guardado en:
Autores principales: | Leehi Joo, Seung Chai Jung, Hyunna Lee, Seo Young Park, Minjae Kim, Ji Eun Park, Keum Mi Choi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2e9952f411444fc49774bd2421e6fed7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep Learning Framework to Detect Ischemic Stroke Lesion in Brain MRI Slices of Flair/DW/T1 Modalities
por: Venkatesan Rajinikanth, et al.
Publicado: (2021) -
ROLE OF CONTRAST ENHANCED FLAIR MRI AS A NEW TOOL IN DIAGNOSING TUBERCULOUS MENINGITIS
por: Riffat Mushtaq, et al.
Publicado: (2020) -
Increased global and local efficiency of human brain anatomical networks detected with FLAIR-DTI compared to non-FLAIR-DTI.
por: Shumei Li, et al.
Publicado: (2013) -
Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans
por: Hwan-ho Cho, et al.
Publicado: (2021) -
Radiomics feature robustness as measured using an MRI phantom
por: Joonsang Lee, et al.
Publicado: (2021)