Observation and theoretical calculations of voltage-induced large magnetocapacitance beyond 330% in MgO-based magnetic tunnel junctions

Abstract Magnetic tunnel junctions (MTJs) in the field of spintronics have received enormous attention owing to their fascinating spin phenomena for fundamental physics and potential applications. MTJs exhibit a large tunnel magnetoresistance (TMR) at room temperature. However, TMR depends strongly...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kentaro Ogata, Yusuke Nakayama, Gang Xiao, Hideo Kaiju
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2eae4e15317f432c9abf711e6678c704
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Magnetic tunnel junctions (MTJs) in the field of spintronics have received enormous attention owing to their fascinating spin phenomena for fundamental physics and potential applications. MTJs exhibit a large tunnel magnetoresistance (TMR) at room temperature. However, TMR depends strongly on the bias voltage, which reduces the magnitude of TMR. On the other hand, tunnel magnetocapacitance (TMC), which has also been observed in MTJs, can be increased when subjecting to a biasing voltage, thus exhibiting one of the most interesting spin phenomena. Here we report a large voltage-induced TMC beyond 330% in MgO-based MTJs, which is the largest value ever reported for MTJs. The voltage dependence and frequency characteristics of TMC can be explained by the newly proposed Debye-Fröhlich model using Zhang-sigmoid theory, parabolic barrier approximation, and spin-dependent drift diffusion model. Moreover, we predict that the voltage-induced TMC ratio could reach over 3000% in MTJs. It is a reality now that MTJs can be used as capacitors that are small in size, broadly ranged in frequencies and controllable by a voltage. Our theoretical and experimental findings provide a deeper understanding on the exact mechanism of voltage-induced AC spin transports in spintronic devices. Our research may open new avenues to the development of spintronics applications, such as highly sensitive magnetic sensors, high performance non-volatile memories, multi-functional spin logic devices, voltage controlled electronic components, and energy storage devices.