Application of bi-modal signal in the classification and recognition of drug addiction degree based on machine learning
Most studies on drug addiction degree are made based on statistical scales, addicts' account, and subjective judgement of rehabilitation doctors. No objective, quantified evaluation has been made. This paper uses devises the synchronous bimodal signal collection and experimentation paradigm wit...
Guardado en:
Autores principales: | Xuelin Gu, Banghua Yang, Shouwei Gao, Lin Feng Yan, Ding Xu, Wen Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2eb57a73213645b68d43d1ade1ed5f54 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Classification accuracy and functional difference prediction in different brain regions of drug abuser prefrontal lobe basing on machine-learning
por: Banghua Yang, et al.
Publicado: (2021) -
Prefrontal fNIRS-based clinical data analysis of brain functions in individuals abusing different types of drugs
por: Xuelin Gu, et al.
Publicado: (2021) -
Bible Journaling as a Spiritual Aid in Addiction Recovery
por: Amanda Dillon
Publicado: (2021) -
Avances en la clínica de las adicciones: el rol del aprendizaje y la dopamina
por: Pérez F,Juan Manuel, et al.
Publicado: (2007) -
Entre el consumo de drogas y la drogadicción /
por: Moreno, Rodrigo
Publicado: (2015)