Substrate recognition determinants of human eIF2α phosphatases
Phosphorylation of the translation initiation factor eIF2α is a rapid and vital cellular defence against many forms of stress. In mammals, the levels of eIF2α phosphorylation are set through the antagonistic action of four protein kinases and two heterodimeric protein phosphatases. The phosphatases...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2ebf25ba0e42406a8cb5e2913927c95c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2ebf25ba0e42406a8cb5e2913927c95c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2ebf25ba0e42406a8cb5e2913927c95c2021-12-02T14:47:01ZSubstrate recognition determinants of human eIF2α phosphatases10.1098/rsob.2102052046-2441https://doaj.org/article/2ebf25ba0e42406a8cb5e2913927c95c2021-12-01T00:00:00Zhttps://royalsocietypublishing.org/doi/10.1098/rsob.210205https://doaj.org/toc/2046-2441Phosphorylation of the translation initiation factor eIF2α is a rapid and vital cellular defence against many forms of stress. In mammals, the levels of eIF2α phosphorylation are set through the antagonistic action of four protein kinases and two heterodimeric protein phosphatases. The phosphatases are composed of the catalytic subunit PP1 and one of two related non-catalytic subunits, PPP1R15A or PPP1R15B (R15A or R15B). Here, we generated a series of R15 truncation mutants and tested their properties in mammalian cells. We show that substrate recruitment is encoded by an evolutionary conserved region in R15s, R15A325–554 and R15B340–639. G-actin, which has been proposed to confer selectivity to R15 phosphatases, does not bind these regions, indicating that it is not required for substrate binding. Fragments containing the substrate-binding regions but lacking the PP1-binding motif trapped the phospho-substrate and caused accumulation of phosphorylated eIF2α in unstressed cells. Activity assays in cells showed that R15A325–674 and R15B340–713, encompassing the substrate-binding region and the PP1-binding region, exhibit wild-type activity. This work identifies the substrate-binding region in R15s, that functions as a phospho-substrate trapping mutant, thereby defining a key region of R15s for follow up studies.George HodgsonAntonina AndreevaAnne BertolottiThe Royal SocietyarticlephosphatasePP1PPP1R15integrated stress responseeIF2α phosphorylationBiology (General)QH301-705.5ENOpen Biology, Vol 11, Iss 12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
phosphatase PP1 PPP1R15 integrated stress response eIF2α phosphorylation Biology (General) QH301-705.5 |
spellingShingle |
phosphatase PP1 PPP1R15 integrated stress response eIF2α phosphorylation Biology (General) QH301-705.5 George Hodgson Antonina Andreeva Anne Bertolotti Substrate recognition determinants of human eIF2α phosphatases |
description |
Phosphorylation of the translation initiation factor eIF2α is a rapid and vital cellular defence against many forms of stress. In mammals, the levels of eIF2α phosphorylation are set through the antagonistic action of four protein kinases and two heterodimeric protein phosphatases. The phosphatases are composed of the catalytic subunit PP1 and one of two related non-catalytic subunits, PPP1R15A or PPP1R15B (R15A or R15B). Here, we generated a series of R15 truncation mutants and tested their properties in mammalian cells. We show that substrate recruitment is encoded by an evolutionary conserved region in R15s, R15A325–554 and R15B340–639. G-actin, which has been proposed to confer selectivity to R15 phosphatases, does not bind these regions, indicating that it is not required for substrate binding. Fragments containing the substrate-binding regions but lacking the PP1-binding motif trapped the phospho-substrate and caused accumulation of phosphorylated eIF2α in unstressed cells. Activity assays in cells showed that R15A325–674 and R15B340–713, encompassing the substrate-binding region and the PP1-binding region, exhibit wild-type activity. This work identifies the substrate-binding region in R15s, that functions as a phospho-substrate trapping mutant, thereby defining a key region of R15s for follow up studies. |
format |
article |
author |
George Hodgson Antonina Andreeva Anne Bertolotti |
author_facet |
George Hodgson Antonina Andreeva Anne Bertolotti |
author_sort |
George Hodgson |
title |
Substrate recognition determinants of human eIF2α phosphatases |
title_short |
Substrate recognition determinants of human eIF2α phosphatases |
title_full |
Substrate recognition determinants of human eIF2α phosphatases |
title_fullStr |
Substrate recognition determinants of human eIF2α phosphatases |
title_full_unstemmed |
Substrate recognition determinants of human eIF2α phosphatases |
title_sort |
substrate recognition determinants of human eif2α phosphatases |
publisher |
The Royal Society |
publishDate |
2021 |
url |
https://doaj.org/article/2ebf25ba0e42406a8cb5e2913927c95c |
work_keys_str_mv |
AT georgehodgson substraterecognitiondeterminantsofhumaneif2aphosphatases AT antoninaandreeva substraterecognitiondeterminantsofhumaneif2aphosphatases AT annebertolotti substraterecognitiondeterminantsofhumaneif2aphosphatases |
_version_ |
1718389557909520384 |