Life Cycle Climate Change Impact of a Cost-Optimal HVDC Connection to Import Solar Energy from Australia to Singapore
This paper aims to evaluate the life cycle greenhouse gas (GHG) emissions of importing electrical power into Singapore, generated from a large-scale solar photovoltaic (PV) power plant in Australia, through a long-distance subsea high-voltage direct current (HVDC) cable. A cost optimization model wa...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2ec0a3b362bd41e2b3ff3f8b3ae48172 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This paper aims to evaluate the life cycle greenhouse gas (GHG) emissions of importing electrical power into Singapore, generated from a large-scale solar photovoltaic (PV) power plant in Australia, through a long-distance subsea high-voltage direct current (HVDC) cable. A cost optimization model was developed to estimate the capacities of the system components. A comprehensive life cycle assessment model was built to estimate emissions of manufacturing and use of these components. Our evaluation shows that, for covering one fifth of Singapore’s electrical energy needs, a system with an installed capacity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>13</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">G</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">W</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">P</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">V</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>17</mn></mrow></semantics></math></inline-formula> GWh battery storage and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.2</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">G</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">W</mi></semantics></math></inline-formula> subsea cable is required. The life cycle GHG emissions of such a system are estimated to be <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>110</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>CO</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>eq/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>kWh</mi></semantics></math></inline-formula>, with the majority coming from the manufacturing of solar PV panels. Cable manufacturing does not contribute largely toward GHG emissions. By varying full-load hours and cable lengths, it was assessed that sites closer to Singapore might provide the same energy at same/lower carbon footprint and reduced cost, despite the lower insolation as compared to Australia. However, these sites could cause greater emissions from land use changes than the deserts of Australia, offsetting the advantages of a shorter HVDC cable. |
---|