Life Cycle Climate Change Impact of a Cost-Optimal HVDC Connection to Import Solar Energy from Australia to Singapore

This paper aims to evaluate the life cycle greenhouse gas (GHG) emissions of importing electrical power into Singapore, generated from a large-scale solar photovoltaic (PV) power plant in Australia, through a long-distance subsea high-voltage direct current (HVDC) cable. A cost optimization model wa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Srikkanth Ramachandran, Kais Siala, Cristina de La Rúa, Tobias Massier, Arif Ahmed, Thomas Hamacher
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/2ec0a3b362bd41e2b3ff3f8b3ae48172
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2ec0a3b362bd41e2b3ff3f8b3ae48172
record_format dspace
spelling oai:doaj.org-article:2ec0a3b362bd41e2b3ff3f8b3ae481722021-11-11T15:57:13ZLife Cycle Climate Change Impact of a Cost-Optimal HVDC Connection to Import Solar Energy from Australia to Singapore10.3390/en142171781996-1073https://doaj.org/article/2ec0a3b362bd41e2b3ff3f8b3ae481722021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1073/14/21/7178https://doaj.org/toc/1996-1073This paper aims to evaluate the life cycle greenhouse gas (GHG) emissions of importing electrical power into Singapore, generated from a large-scale solar photovoltaic (PV) power plant in Australia, through a long-distance subsea high-voltage direct current (HVDC) cable. A cost optimization model was developed to estimate the capacities of the system components. A comprehensive life cycle assessment model was built to estimate emissions of manufacturing and use of these components. Our evaluation shows that, for covering one fifth of Singapore’s electrical energy needs, a system with an installed capacity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>13</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">G</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">W</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">P</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">V</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>17</mn></mrow></semantics></math></inline-formula> GWh battery storage and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.2</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">G</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">W</mi></semantics></math></inline-formula> subsea cable is required. The life cycle GHG emissions of such a system are estimated to be <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>110</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>CO</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>eq/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>kWh</mi></semantics></math></inline-formula>, with the majority coming from the manufacturing of solar PV panels. Cable manufacturing does not contribute largely toward GHG emissions. By varying full-load hours and cable lengths, it was assessed that sites closer to Singapore might provide the same energy at same/lower carbon footprint and reduced cost, despite the lower insolation as compared to Australia. However, these sites could cause greater emissions from land use changes than the deserts of Australia, offsetting the advantages of a shorter HVDC cable.Srikkanth RamachandranKais SialaCristina de La RúaTobias MassierArif AhmedThomas HamacherMDPI AGarticlelife cycle assessmentcost optimizationHVDC cablephotovoltaicsAustraliaSingaporeTechnologyTENEnergies, Vol 14, Iss 7178, p 7178 (2021)
institution DOAJ
collection DOAJ
language EN
topic life cycle assessment
cost optimization
HVDC cable
photovoltaics
Australia
Singapore
Technology
T
spellingShingle life cycle assessment
cost optimization
HVDC cable
photovoltaics
Australia
Singapore
Technology
T
Srikkanth Ramachandran
Kais Siala
Cristina de La Rúa
Tobias Massier
Arif Ahmed
Thomas Hamacher
Life Cycle Climate Change Impact of a Cost-Optimal HVDC Connection to Import Solar Energy from Australia to Singapore
description This paper aims to evaluate the life cycle greenhouse gas (GHG) emissions of importing electrical power into Singapore, generated from a large-scale solar photovoltaic (PV) power plant in Australia, through a long-distance subsea high-voltage direct current (HVDC) cable. A cost optimization model was developed to estimate the capacities of the system components. A comprehensive life cycle assessment model was built to estimate emissions of manufacturing and use of these components. Our evaluation shows that, for covering one fifth of Singapore’s electrical energy needs, a system with an installed capacity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>13</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">G</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">W</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">P</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">V</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>17</mn></mrow></semantics></math></inline-formula> GWh battery storage and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.2</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">G</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">W</mi></semantics></math></inline-formula> subsea cable is required. The life cycle GHG emissions of such a system are estimated to be <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>110</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>CO</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>eq/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>kWh</mi></semantics></math></inline-formula>, with the majority coming from the manufacturing of solar PV panels. Cable manufacturing does not contribute largely toward GHG emissions. By varying full-load hours and cable lengths, it was assessed that sites closer to Singapore might provide the same energy at same/lower carbon footprint and reduced cost, despite the lower insolation as compared to Australia. However, these sites could cause greater emissions from land use changes than the deserts of Australia, offsetting the advantages of a shorter HVDC cable.
format article
author Srikkanth Ramachandran
Kais Siala
Cristina de La Rúa
Tobias Massier
Arif Ahmed
Thomas Hamacher
author_facet Srikkanth Ramachandran
Kais Siala
Cristina de La Rúa
Tobias Massier
Arif Ahmed
Thomas Hamacher
author_sort Srikkanth Ramachandran
title Life Cycle Climate Change Impact of a Cost-Optimal HVDC Connection to Import Solar Energy from Australia to Singapore
title_short Life Cycle Climate Change Impact of a Cost-Optimal HVDC Connection to Import Solar Energy from Australia to Singapore
title_full Life Cycle Climate Change Impact of a Cost-Optimal HVDC Connection to Import Solar Energy from Australia to Singapore
title_fullStr Life Cycle Climate Change Impact of a Cost-Optimal HVDC Connection to Import Solar Energy from Australia to Singapore
title_full_unstemmed Life Cycle Climate Change Impact of a Cost-Optimal HVDC Connection to Import Solar Energy from Australia to Singapore
title_sort life cycle climate change impact of a cost-optimal hvdc connection to import solar energy from australia to singapore
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/2ec0a3b362bd41e2b3ff3f8b3ae48172
work_keys_str_mv AT srikkanthramachandran lifecycleclimatechangeimpactofacostoptimalhvdcconnectiontoimportsolarenergyfromaustraliatosingapore
AT kaissiala lifecycleclimatechangeimpactofacostoptimalhvdcconnectiontoimportsolarenergyfromaustraliatosingapore
AT cristinadelarua lifecycleclimatechangeimpactofacostoptimalhvdcconnectiontoimportsolarenergyfromaustraliatosingapore
AT tobiasmassier lifecycleclimatechangeimpactofacostoptimalhvdcconnectiontoimportsolarenergyfromaustraliatosingapore
AT arifahmed lifecycleclimatechangeimpactofacostoptimalhvdcconnectiontoimportsolarenergyfromaustraliatosingapore
AT thomashamacher lifecycleclimatechangeimpactofacostoptimalhvdcconnectiontoimportsolarenergyfromaustraliatosingapore
_version_ 1718432528059072512