NAD+ loss, a new player in AhR biology: prevention of thymus atrophy and hepatosteatosis by NAD+ repletion

Abstract Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) is a carcinogenic and highly toxic industrial byproduct that persists in the environment and produces a pleiotropic toxicity syndrome across vertebrate species that includes wasting, hepatosteatosis, and thymus atrophy. Dioxin toxicities re...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Silvia Diani-Moore, Jenny Shoots, Rubi Singh, Joshua B. Zuk, Arleen B. Rifkind
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2ec744b98cec42aba26d391463ce2a99
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) is a carcinogenic and highly toxic industrial byproduct that persists in the environment and produces a pleiotropic toxicity syndrome across vertebrate species that includes wasting, hepatosteatosis, and thymus atrophy. Dioxin toxicities require binding and activation of the aryl hydrocarbon receptor (AhR), a ligand activated transcription factor. However, after nearly 50 years of study, it remains unknown how AhR activation by dioxin produces toxic effects. Here, using the chick embryo close to hatching, a well-accepted model for dioxin toxicity, we identify NAD+ loss through PARP activation as a novel unifying mechanism for diverse effects of dioxin in vivo. We show that NAD+ loss is attributable to increased PARP activity in thymus and liver, as cotreatment with dioxin and the PARP inhibitor PJ34 increased NAD+ levels and prevented both thymus atrophy and hepatosteatosis. Our findings additionally support a role for decreased NAD+ dependent Sirt6 activity in mediating dioxin toxicity following PARP activation. Strikingly, treatment in vivo with the NAD+ repleting agent nicotinamide, a form of vitamin B3, prevented thymus atrophy and hepatosteatosis by dioxin and increased sirtuin activity, providing a therapeutic approach for preventing dioxin toxicities in vivo.